Abstract

The middle Cretaceous Crowsnest Formation west of Coleman, Alberta, is composed of bedded alkaline volcanic deposits containing heterolithic volcanic rock fragments and crystal clasts. Comparison with modern examples of subaerial pyroclastic rocks suggests that pyroclastic flows, surges, fallout of material from vertical eruption columns, and minor mud flows emplaced the deposits. Textural evidence in the form of plastically deformed volcanic fragments, chilled deposit margins, baked rock fragment margins, recrystallization, and the presence of charred wood and charred wood molds indicate emplacement at elevated temperature. Massive deposits containing a fine-grained basal zone are interpreted as the product of pyroclastic flows, whereas deposits characterized by a block-rich base overlain by a thin layer of block-depleted stratified material are interpreted as the product of density-stratified surges. Deposits exhibiting pronounced stratification were emplaced by ash-cloud surges. Thickly bedded breccias exhibiting rheomorphic textures were emplaced as vent-proximal pyroclastic flows. Deposits characterized by parallel beds and graded structures are interpreted as fallout tephra deposits, and deposition by lahars is indicated by coarse-grained beds that lack evidence for emplacement at elevated temperatures. The eruptions of the Crowsnest Formation were cyclical. An initial explosive phase generated deposits by pyroclastic flows, surges, fallout, and lahars. As an eruption progressed, it evolved into a poorly gas-charged effusive stage that emplaced coarsely porphyritic domes, plugs, spines, and vent-proximal lava flows. Subsequent eruptions destroyed the effusive vent facies deposits and produced abundant heterolithic clasts typical of the formation.

You do not currently have access to this article.