Abstract

An integration of structural field data and Lithoprobe seismic reflection line 28 in the northwestern Abitibi Greenstone Belt (AGB) reveals a crustal-scale, south-to southwest-vergent thrusting event that developed "in sequence" above a shallowly (15°) north-dipping sole thrust at a mid-crustal level. Seismic reflector geometry above this décollement suggests a mid crust (6–20 km depth) dominated by low-angle thrusts with smooth trajectory ramps and culmination folds or antiformal stacks, similar to the structural style of neighbouring high-grade plutonic–gneissic (Opatica) and sedimentary (Pontiac) subprovinces. In contrast, low-to high-angle east–west-trending thrusts at the upper-crust greenstone belt level (6–9 km depth) are interpreted to be listric. They occur in two fault systems, the Chicobi and Taibi, that resemble "imbricate fan" systems. The contrasting structural geometry of the upper and mid crust is interpreted as variations in level through the thrust stack, and resembles Paleozoic mountain belts where the upper AGB would represent a ductile–brittle fold–thrust belt. However, the structural evolution of the AGB has been complicated by earlier intrusive–metamorphic contacts or set of thrusts beneath it, and (or) younger out-of-sequence thrusts with north-vergent backthrusts. Also, south-to southwest-vergent thrusts were reactivated, folded, and steepened during a younger dextral strike-slip event.

You do not currently have access to this article.