A detailed, integrated field, petrographic, and geochemical study of the Springers Hill area of the Bay of Islands ophiolite exposed in the Lewis Hills was undertaken to explain the anomalously high abundance of veins and dykes of chromitite, orthopyroxenite, and clinopyroxenite, and their associated dunites, hosted by a refractory harzburgite–dunite mixture. A geodynamic situation is presented, which is constrained by previous studies requiring formation of the Springers Hill mantle section at a ridge–fracture zone intersection, and the whole of the Bay of Islands ophiolite within a back-arc spreading environment. The veins and dykes formed during magmatism at the ridge–fracture zone intersection and along the fracture zone, as progressively hotter, more fertile (richer in clinopyroxene) asthenosphere ascended and was channelled up and along the fracture zone wall. Shallow melting of refractory harzburgite in the presence of subduction-derived hydrous fluids produced light rare earth element (LREE)-enriched boninitic magma from which crystallized chromitites, some of their associated dunites, and orthopyroxenites. This melting event dehydrated much of the mantle in and around the zone of partial melting. Continued rise and shallow partial melting of hotter, more fertile mantle under conditions of variable hydration generated LREE-depleted, low-Ti tholeiitic magma. This magma crystallized olivine clinopyroxenite, some associated dunite, and clinopyroxenite. The final magmatic event may have involved partial melting of mid-ocean-ridge basalt-bearing mantle at depth, ascent of the magma, and formation of massive wehrlite–lherzolite bodies at the ridge–fracture zone intersection and along the fracture zone. Ridge–fracture zone intersections in suprasubduction-zone environments are sites of boninitic and tholeiitic magmatism because refractory asthenospheric mantle may melt as it is channelled with subduction-derived fluids to shallow depths by the old, cold lithospheric wall of the fracture zone. Heat for melting is provided by the ascent of hotter, more fertile mantle. Extremely refractory magmas do not occur along "normal" oceanic fracture zones because volumes of highly refractory mantle are much less, subduction-derived hydrous fluids are not present, and fracture zone walls extend to shallower depths.

You do not currently have access to this article.