Abstract

Analyses of Lithoprobe and other data from southwestern Canada provide new insights on how this portion of the Cordillera formed during plate convergence along the western margin of North America. Crustal rocks are detached from their mantle lithosphere, which must have been consumed during subduction. Detachment occurred at or near the base of the crust beneath the Intermontane and (or) Omineca belts, probably along the tips of tectonic wedges while the rocks were still outboard of the relatively cool, mechanically rigid, North American craton. During the Late Cretaceous and early Tertiary, rotation of detached rocks caught between the North American craton and the oceanic plates accounts for some apparently conflicting results between paleomagnetic data that indicate large northward translation of rocks in the western Cordillera, and regional geological features that appear to preclude comparable amounts of translation of rocks in the eastern Cordillera during the same time interval. Transpression associated with rotation in the Foreland and Omineca belts ceased by the early Tertiary because detached allochthonous rocks of the crust became mechanically attached to, and thus physically part of, North America. Continued plate convergence led to regional transtensional shearing and associated crustal extension in the southern Canadian Cordillera, and perhaps as far inboard as northern Montana, where coeval magmatism was probably associated with new, or reactivation of ancient, lithosphere-penetrating fracture systems.

You do not currently have access to this article.