Abstract

Receiver function analysis has proven to be a powerful, yet inexpensive tool for estimating the S-wave velocity structure of the crust and upper mantle beneath three-component seismograph stations in the southern Canadian Cordillera. Receiver function studies using a portable broadband seismograph array across southwestern British Columbia provided site-specific estimates for the location of the subducting Juan de Fuca plate. The oceanic crust was imaged at 47−53 km beneath central Vancouver Island, and 60–65 km beneath the Strait of Georgia. Further, these studies revealed a prominent low-velocity zone (VS = −1.0 km/s) that coincides with the E reflectors imaged ~5–10 km above the subducting plate on Lithoprobe reflection lines. The E low-velocity zone was shown to extend into the upper mantle beneath the Strait of Georgia and the British Columbia mainland, to depths of 50–60 km. Combining the receiver function and refraction models revealed a high Poisson's ratio (0.27–0.38) for this feature. The continental Moho was estimated at 36 km beneath the Strait of Georgia, and a crustal low-velocity zone associated with the Lithoprobe C reflectors beneath Vancouver Island was interpreted to extend eastward, near the base of the continental crust, to the British Columbia mainland. Analysis of data from the recently deployed Canadian National Seismograph Network demonstrates the variations in crustal thickness and complexity across the southern Canadian Cordillera, with the Moho depth varying from 35 km in the Coast Mountains, to 33 km near Penticton, to 50 km near the Rocky Mountain deformation front.

You do not currently have access to this article.