Four types of igneous clasts from Timiskaming conglomerates of the Kirkland Lake area are identified: calc-alkaline porphyry, trachyte (K2O + N2O > 7.25 wt.%), trondhjemite, and tholeiitic basalt. Clasts derived from quartz–carbonate veins and carbonatized porphyries and komatiites indicate CO2-rich hydrothermal activity along the Larder Lake – Cadillac Fault before sedimentation. Calc-alkaline porphyry, the predominant clast, is similar in appearance to feldspar porphyry intrusions widely exposed in the area, but the two are not related. The porphyry clasts are cogenetic with diorite–granodiorite intrusions and volcanic rocks of the greenstone belt. Andesite clasts are only observed near the base of the assemblage, and the ratio of basalt to andesite increases up stratigraphic sections. The change suggests progressive erosion of arc-related volcanic rocks during sedimentation. Composition, texture, and mineralogy of the trondhjemite clasts are consistent with their derivation from the marginal phases of the Round Lake batholith. Intrusive rocks of the Timiskaming Group (coarse-grained holocrystalline syenitic–monzonitic rocks, biotite-bearing feldspar porphyries, and mica-rich lamprophyres) were not observed in the clasts, which suggests sedimentation prior to unroofing of these rocks. Sedimentation of the conglomerates postdated unroofing of underlying plagioclase porphyry (~2685 Ma), but predated unroofing of Timiskaming intrusions. The distribution of alkaline clasts only in proximity to the fault implies that alkaline magmatism was confined along the fault. Derivation of clasts from both sides of the fault and proximity of inferred sources support a pull-apart basin for sedimentation with minor strike-slip movement during and after the sedimentation.

You do not currently have access to this article.