The principal faults of southeastern Gaspé Peninsula in Quebec consist of a central high-strain zone that is characterized by mainly ductile deformation structures and bordered by low-strain zones each dominated by brittle deformation structures. The overall geometry of shear fractures within the low-strain zones is quite similar to the expected geometry of Riedel shear fractures. The brittle structures overprint the dominant C–S-type fabric of the high-strain zone, which implies that brittle deformation outlasted ductile deformation. The asymmetry of local micro- to meso-scale deformation features along the fault zones reflects the non-coaxiality of the shear. Other features described within the fault zone (stylolitic cleavage, shear bands, and reverse faults) are evidence for a component of shortening perpendicular or oblique to the fault zone. The geometry of the Grand Pabos fault zone (GPFZ), a major fault of southern Gaspé, indicates that deeper seated fault rocks (high-strain zone) have been brought up to higher crustal levels and are presently in contact with brittlely deformed fault rocks (low-strain zone). The proposed model for the evolution of the GPFZ involves Early to Late Devonian, dextral, transcurrent movement accompanied by relatively minor amounts of vertical slip within a dextral transpressive regime. The main pulse of the Acadian orogeny in Gaspé is restricted to the Devonian and therefore occurred later than elsewhere in the Canadian Appalachians.

You do not currently have access to this article.