Needle Falls Shear Zone is the southern part of a major northeast-trending ductile shear system within the Paleoproterozoic Trans-Hudson Orogen in Saskatchewan. Throughout its exposed length of ~400 km, the shear zone separates reworked Archean continental crust and infolded Paleoproterozoic supracrustals of the Cree Lake Zone, to the northwest, from mainly juvenile Paleoproterozoic arc terrains and granitoid plutons of the Reindeer Zone, to the southeast. It also defines the northwest margin of the ca. 1855 Ma Wathaman Batholith, which forms the main protolith to shear zone mylonites. Although not precisely dated, available age constraints suggest that the shear zone formed between ca. 1855 and 1800 Ma, toward the end of peak thermotectonism in this part of the orogen.In the Needle Falls study area, shear zone mylonites exhibit varied, sequentially developed, ductile to brittle fabric features, including C–S fabrics, winged porphyroclasts (especially delta type), small-scale compressional and extensional microfaults ranging from thin ductile shear zones to late brittle faults, early isoclinal and sheath folds, later asymmetric folds related to compressional microfaults, and variably rotated and (or) folded quartz veins. All ductile shear-sense indicators suggest dextral displacement, as do most later ductile–brittle transition and brittle features. In conjunction with a gently north–northeast-plunging extension lineation, such data indicate oblique east-side-up dextral movement across the shear zone. However, preexisting structures in country rock protoliths rotate into the shear zone in a sense contrary to that predicted by ideal dextral simple shear, a feature thought to reflect significant flattening across the shear zone. Other ductile to brittle fabric elements in the mylonites are consistent with general noncoaxial strain, rather than ideal simple shear. Amount of displacement cannot be measured but indirect estimates suggest approximately 40 ± 20 km.The Needle Falls Shear Zone is too small and has developed too late in regional tectonic history to be considered a crustal suture. Rather, it is interpreted as either a late-tectonic oblique collisional structure or as the result of counterclockwise oroclinal rotation of the southern part of the orogen.

You do not currently have access to this article.