Eight apatite and two zircon fission-track ages provide evidence of complex Tertiary thermal overprinting by hydrothermal fluids in the Gilmore Dome area. Five ages on apatite from the Fort Knox gold deposit average 41 Ma, one from the Stepovich prospect is 80 Ma, and two from Pedro Dome average 67 Ma. Elevations of these samples overlap but their ages do not, indicating that each area experienced a different thermal history.Ages of apatite from the Fort Knox gold deposit decrease with elevation from 42 to 36 Ma but have data trends indicative of complex cooling. Two ~51 Ma ages on zircon indicate that maximum temperatures approached or exceeded ~180 °C. An alteration assemblage of chalcedony + zeolite + calcite + clay in the deposit resulted from deposition by a paleo-hydrothermal system. The data suggest that the system followed a complex cooling path from > 180 to < 110 °C between 51 and 36 Ma, and that final cooling to below 60 °C occurred after ~25 Ma.The 80 Ma age from Stepovich prospect either resulted from cooling after intrusion of the underlying pluton (~90 Ma) or records postintrusion thermal overprinting sometime after ~50 Ma. The 67 Ma samples from Pedro Dome may also have experienced partial age reduction during later heating. The differences in the data from the different areas and the presence of a late alteration assemblage at Fort Knox suggest that the fluids responsible for heating were largely confined to the highly fractured and porous Fort Knox pluton.

You do not currently have access to this article.