Abstract

We applied an iterative combination of two-dimensional traveltime inversion and amplitude forward modelling to seismic refraction data along a 350 km along-strike profile in the Coast Belt of the southern Canadian Cordillera to determine crust and upper mantle P-wave velocity structure. The crustal model features a thin (0.5–3.0 km) near-surface layer with an average velocity of 4.4 km/s, and upper-, middle-, and lower-crustal strata which are each approximately 10 km thick and have velocities ranging from 6.2 to 6.7 km/s. The Moho appears as a 2 km thick transitional layer with an average depth of 35 km and overlies an upper mantle with a poorly constrained velocity of over 8 km/s. Other interpretations indicate that this profile lies within a collision zone between the Insular superterrane and the ancient North American margin and propose two collision-zone models: (i) crustal delamination, whereby the Insular superterrane was displaced along east-vergent faults over the terranes below; and (ii) crustal wedging, in which interfingering of Insular rocks occurs throughout the crust. The latter model involves thick layers of Insular material beneath the Coast Belt profile, but crustal velocities indicate predominantly non-Insular material, thereby favoring the crustal delamination model. Comparisons of the velocity model with data from the proximate reflection lines show that the top of the Moho transition zone corresponds with the reflection Moho. Comparisons with other studies suggest that likely sources for intracrustal wide-angle reflections observed in the refraction data are structural features, lithological contrasts, and transition zones surrounding a region of layered porosity in the crust.

You do not currently have access to this article.