The Upper Silurian – Lower Devonian volcanic rocks in the southern Gaspé Peninsula of the Quebec Appalachians crop out at the northeast end of the Connecticut Valley – Gaspé Synclinorium. These shallow marine and subaerial sequences reach a thickness of up to at least 2000 m and comprise two groups: (1) the Late Silurian volcanic rocks, which are mainly transitional alkalic–tholeiitic basalts with steeply sloping REE patterns; (2) the Early Devonian volcanic rocks, which include a significant proportion of intermediate rocks in addition to tholeiitic basalts. Compared with the Silurian rocks, the Devonian basalts have lower abundances of strongly incompatible trace elements such as Ba, Th, Ta, Nb, and light REE and relatively flat heavy REE patterns. Basalts of both groups display negative Nb and Ta anomalies (relative to Th and La).Although the basalts of both sequences were derived from lithospheric mantle, the Silurian basalts were generated from garnet peridotite at ~ 80 km depth while the Devonian basalts appear to have resulted from a larger degree of melting of spinel peridotite at a shallower depth (~ 60 km). Devonian intermediate rocks are probably the result of mixing of the basaltic magma with upper crustal material through assimilation – fractional crystallization processes. The basalts are interpreted to have formed in a northwest-trending rift zone located in the Quebec Reentrant during dextral transpression along the Appalachian Orogen. Rotation during and after the volcanism reoriented the rift zone to a northeast trend. The high density layer at the base of the crust under the Magdalen Basin may be the former magma chamber for the Silurian–Devonian volcanism. The change from transitional to tholeiitic volcanism at the Silurian–Devonian boundary suggests that the stretching value (ratio of final to initial surface area) increased from < 2 to > 2 at that time. This boundary is also coincident with the Salinic disturbance that is inferred to have been produced by erosion of the thermally uplifted block associated with rifting.

You do not currently have access to this article.