As part of the Lithoprobe Southern Cordillera transect, seismic refraction data were recorded along a 330 km long strike profile in the Intermontane belt. An iterative combination of two-dimensional traveltime inversion and amplitude forward modelling was used to interpret crust and upper mantle P-wave velocity structure. This region is characterized by (i) a thin near-surface layer with large variations in velocity between 2.8 and 5.4 km/s, and low-velocity regions that correlate well with surface expressions of Tertiary sedimentary and volcanic rocks; (ii) an upper and middle crust with low average velocity gradient, possibly a weak low-velocity zone, and lateral velocity variations between 6.0 and 6.4 km/s; (iii) a distinctive lower crust characterized by significantly higher average velocities relative to midcrustal values beginning at 23 km depth, approximately 8 km thick with average velocities of 6.5 and 6.7 km/s at top and base; (iv) a depth to Moho, as defined by wide-angle reflections, that averages 33 km with variations up to 2 km; and (v) a Moho transition zone of depth extent 1–3 km, below which lies the upper mantle with velocities decreasing from 7.9 km/s in the south to 7.7 km/s in the north. Where the refraction line obliquely crosses a Lithoprobe deep seismic-reflection profile, good agreement is obtained between the interpreted reflection section and the derived velocity structure model. In particular, depths to wide-angle reflectors in the upper crust agree with depths to prominent reflection events, and Moho depths agree within 1 km. From this comparison, the upper and middle crust probably comprise the upper part of the Quesnellia terrane. The lower crust from the refraction interpretation does not show the division into two components, parautochthonous and cratonic North America, that is inferred from the reflection data, indicating that their physical properties are not significantly different within the resolution of the refraction data. Based on these interpretations, the lower lithosphere of Quesnellia is absent and presumably was recycled in the mantle. At a depth of ~ 16 km below the Moho, an upper mantle reflector may represent the base of the present lithosphere.

You do not currently have access to this article.