Abstract

The Chipman Lake complex crops out as a series of carbonatite and related alkalic mafic dikes in the Wabigoon Subprovince of the Superior Province, whereas the Seabrook Lake complex crops out as an alkalic syenite – carbonatite stock in the Abitibi Subprovince. Paleomagnetic analysis was done on specimens from 23 and 19 sites located in and around the Chipman Lake and Seabrook Lake complexes, respectively, using detailed alternating-field and thermal step demagnetization and isothermal remanent magnetization tests. Contact tests with adjacent Archean host rocks show that both complexes retain a primary characteristic remanence (ChRM). The Chipman Lake's ChRM is retained in 11 dikes with normal polarity and one dike with reversed polarity and at one site with normal polarity and one site with reversed polarity from the fenite alteration zone. Its ChRM gives a pole position at 186°E, 38°N (dp = 7°, dm = 11°), which corresponds to a Keweenawan age of 1098 ± 10 Ma, suggesting that younger K–Ar amphibole ages do not date emplacement. The ChRM of the host rock, the Chipman Lake diorite stock, gives a pole at 49°E, 51°N (dp = 8°, dm = 13°), showing that it is not part of the Keweenawan complex but may be a 2.45 Ga Matachewan intrusive. The Seabrook Lake complex's ChRM is found at six normal polarity sites from within the complex and at four normal and three reversed polarity sites from within the fenitized Archean granite and Matachewan diabase of the contact aureole. It gives a pole position at 180°E, 46°N (dp = 11°, dm = 17°), which corresponds to a Keweenawan age of 1103 ± 10 Ma, agreeing with K/Ar biotite ages. The paleomagnetic data indicate that no significant motion on the Kapuskasing Structural Zone occurred after emplacement of the complexes excluding minor vertical uplift of less than about 4 km, and that there were multiple polarity transitions of a symmetric Earth's magnetic field during Keweenawan time.

You do not currently have access to this article.