Abstract

Early Cretaceous clastic volcanic-arc rocks of the Gambier Group in the southern Coast Belt were deposited in estuarine and marine environments on a deeply incised unconformity exposing Jurassic plutonic and arc assemblages. The Cretaceous arc was deformed in response to Late Cretaceous oblique subduction, producing orogen-parallel and orogen-normal shortening. Supracrustal Early Cretaceous rocks are preserved, in part, within the footwalls of overthrust sheets.Basal conglomerate and transgressive clastic successions underlie the volcanic edifices, with clasts reflecting volcanic – plutonic provenance. Volcanic rocks are calc-alkalic and span the complete basalt–andesite–dacite–rhyolite association typical of composite volcanoes. Extensive coarse pyroclastic deposits record an explosive volcanic environment.The Gambier Group occurs within the foreland of the major structural and metamorphic culmination of the southeastern Coast Belt. Early thin-skinned thrusting occurred to the east, repeating the Cretaceous stratigraphy. Overturned detached folds are associated with southerly directed thrusting developed during orogen-parallel shortening, likely in relation to large strike-slip fault systems. Later southwest-directed thrusting and associated large-amplitude folding occurred during Late Cretaceous arc-normal shortening, folding the earlier thrusts. To the southwest, tectonic wedging developed, with much of the Gambier Group preserved in the footwall of opposite southwest- and northeast-facing thrust systems; here southwest-directed thrusts emplaced Late Jurassic plutonic rocks, an unconformity, and lower Gambier strata over younger members, whereas concomitant or younger northeast-directed back thrusts emplaced the mid-Cretaceous plutonic roots of the arc above its volcanic derivative.

You do not currently have access to this article.