The high-grade metamorphic rocks of the Ashuanipi complex have been the subject of a microthermometric fluid-inclusion study. Four types of fluid inclusions were observed: CO2-rich fluids; low-temperature, high-salinity H2O fluids; CH4 ± N2-rich fluids; and high-temperature, low-salinity H2O fluids. The regionally distributed CO2-rich fluids are the earliest fluids, and their calculated isochores indicate a clockwise post-peak metamorphic PTt path for the Ashuanipi complex. The low-temperature, high-salinity aqueous fluid inclusions are also distributed regionally and can be interpreted as late brines, retrograde metamorphic fluids, or the wicked-off aqueous component of H2O–CO2 fluid inclusions. Both CH4 ± N2-rich fluids and the high-temperature, low-salinity aqueous fluid inclusions were found only locally in gold-bearing metamorphosed banded iron formations. Fluid-inclusion microthermometry, arsenopyrite thermometry, and metamorphic petrologic study at Lac Lilois, one of the principal gold showings, suggest that some gold deposition may have occurred during regional post-peak metamorphic exhumation and cooling at PT conditions near the amphibolite–greenschist transition. However, it is possible that gold deposition began at higher near-peak metamorphic PT conditions. Another major gold showing, Arsène, is characterized by CH4 ± N2-rich fluid inclusions, tentatively inferred to be either directly related to gold deposition or responsible for secondary gold enrichment. The association of CH4 ± N2-rich fluids with gold occurrences in the Ashuanipi complex is comparable to gold deposits of the Abitibi greenstone belt and of Wales, Finland, and Brazil.

You do not currently have access to this article.