The Bay of Islands Complex of the Humber Arm allochthon, west Newfoundland, contains the best-exposed ophiolite in the Appalachian Orogen. Associated structural slices, the Little Port and Skinner Cove complexes, also contain rocks formed in an oceanic domain, although their relationship to the Bay of Islands Complex remains controversial.To constrain the origin of the complexes and obtain a better understanding of the geology of the Humber Arm allochthon, we have undertaken an integrated geochronological, geochemical, and isotopic study. A U/Pb zircon age of graphic Ma for the Little Port Complex and a zircon and baddeleyite age of 484 ± 5 Ma for the Bay of Islands Complex have been obtained. Geochemical and isotopic data on trondhjemitic rocks from the two complexes indicate that petrogenetic models for these rocks must account for fundamental differences in source materials and mineralogy during differentiation. The Little Port Complex trondhjemites are characterized by initial εNd of −1 to +1, whereas those in the Bay of Islands have εNd of +6.5. Geochemical signatures in mafic and felsic volcanics of the complexes are diverse, and show a complete gradation between arc and non-arc.The Bay of Islands and Little Port complexes are not related by any form of a major mid-ocean-ridge – transform-fault model. An alternative model to explain the relationships between the two complexes interprets the Little Port as arc-related and the Bay of Islands as a suprasubduction-zone ophiolite.

You do not currently have access to this article.