Abstract

A shaded relief magnetic map covering most of the region of exposed Precambrian rocks of north-central Wisconsin shows the structural grain and many lithologic units with clarity and comprehensive detail. The area includes part of the volcanic sequence of the Keweenawan Supergroup south of Lake Superior, the southern margin of the Archean Superior Province, the accreted island-arc terranes of the Penokean Orogen, and the Wolf River batholith. Numerous dikes are evident in the shaded relief, some being more than 200 km in length. Many of the longer dikes are reversely magnetized Keweenawan diabase associated with early extension of the Midcontinent Rift; some apparently were intruded along preexisting faults. A northwest system of dikes and faults indicated by the shaded relief map may be related to later stages of Keweenawan rifting. The Wolf River batholith is characterized by low magnetic relief associated with the predominant granitoids but includes circular plutons of highly magnetic anorthosite and a large area of magnetic rock having a signature different from the mapped anorthosite bodies. A fault bounding the western side of the batholith is paralleled by an apparent system of faults or dikes in the older terrane to the west. The magnetic map covering the Wisconsin magmatic terranes and the Archean Superior Province margin to the north is dominated by east-northeast-trending Penokean rocks. Large units of magnetic mafic rocks and less magnetic granitoid rocks are cut by a system of well-defined northeast shear zones and a more easterly trending, possibly younger set of faults, some of which contain dikes along parts of their lengths. Although the sutures bounding the magmatic terranes generally follow the magnetic trends, they do not have distinctive magnetic signatures.

You do not currently have access to this article.