Abstract

Microstructural and petrofabric analyses of mylonites from the Monashee Décollement demonstrate that the hanging wall was displaced eastward over the footwall. Microstructural kinematic indicators include shear-band foliation, asymmetric strain shadows, and S–C fabrics. Quartz c axes locally exhibit asymmetric fabrics that are consistent with the microstructural evidence for sense of shear. The kinematic evidence is reliable because multiple criteria coexist within individual specimens.Metamorphic assemblages from footwall Monashee Complex pelites at the Revelstoke damsite indicate that the peak metamorphic assemblage was sillimanite–K-feldspar–biotite–almandine–quartz ± plagioclase. Biotite–garnet geothermometry and garnet–plagioclase–sillimanite–quartz geobarometry set broad constraints on metamorphic temperatures but closer constraints on pressures, near 650 °C and 630 MPa.Comparison of these data with Late Cretaceous hornblende cooling ages from the same locality indicates that the metamorphism is at least as old as Late Cretaceous. Complex microstructures relating to repeated mylonitization and annealing render difficult the correlation of metamorphic conditions with mylonitic fabrics. Early mylonitic textures predate the metamorphic equilibration and thus are pre-Late Cretaceous in age. Postmetamorphic mylonites are well preserved, but their ages are poorly constrained. The present interpretation favours a Late Cretaceous to Paleocene age relating to compressional tectonics. However, an Early Eocene age relating to extensional shearing cannot be excluded.

You do not currently have access to this article.