Acidic effluent containing enhanced concentrations of toxic heavy metals discharges from a cumulative total of 104 ha of mine-tailings waste in Canada. Communities of acidophilic microorganisms, specifically the unicellular alga Euglena sp. and bacteria, thrive in many of the hostile, low-pH effluent environments, which are otherwise devoid of life. The micro organisms concentrate aqueous dissolved metals onto cell walls and at intracellular sites, during the life cycle, and strongly bind metals during early diagenesis. A sequence is observed in which amorphous Fe and Ti concentrated at cell walls are progressively transformed to microcrystalline aggregates of goethite, ferrihydrite, maghemite, magnetite, haematite, lepidocrocite, and ilmenite. The bioprecipitated Ti- and Fe-oxides and oxyhydroxides act as scavengers for heavy metals such as Cu, Pb, Zn, Ni, Cd, and Th. Acidophilic microorganisms play a central role in the toxic-metal budget of mine-tailings waste by efficiently sequestering aqueous metals and by promoting nucleation of oxide minerals whose inorganic formation is kinetically inhibited, thereby retarding toxic-metal dispersion into the natural environment.

You do not currently have access to this article.