Thermodynamic calculations and models of olivine zoning profiles are used to estimate the crystallization history of a basaltic magma from Cow Lakes, southeast Oregon. The lava is an alkali olivine basalt containing olivine and plagioclase phenocrysts and microphenocrysts. The geometry and range of chemical zoning in the olivine phenocrysts have been delineated by laser interference microscopy and electron microprobe analysis. The olivine phenocrysts are characterized by homogeneous cores and rims that exhibit strong, continuous, normal zoning (ΔFo = 7–19 mol%).Thermodynamic modelling has been used to estimate the magmatic crystallization path of the Cow Lakes basalt on the basis of the phenocryst assemblage and mineral compositions. The calculated crystallization path begins at 1290 °C and 0.5 GPa (graphic) with equilibrium crystallization of the olivine to 1265 °C. Plagioclase appears at 1225 °C, followed by clinopyroxene at 1205 °C. Intratelluric crystallization was terminated prior to crystallization of the clinopyroxene, which is seen in the groundmass but not as phenocrysts.The thermodynamic modelling provides a means to numerically simulate the zoning patterns in olivine defined by the laser interference microscopy. Simulated and observed zoning patterns both have compositionally flat cores and strongly zoned rims. The extent of zoning observed in the olivine phenocrysts is, however, approximately twice the predicted extent, and it appears that a significant proportion of olivine phenocrysts crystallized during ascent or upon eruption.

You do not currently have access to this article.