Abstract

The uppermost Proterozoic–Lower Cambrian Hamill Group of southeastern British Columbia contains geologic evidence for a phase of extensional tectonism that led directly to the onset of thermally controlled subsidence in the Cordilleran miogeocline. Moreover, the Hamill Group contains the sedimentological record of the passage of the ancient passive margin from unstable tectonic conditions associated with rifting and (or) the earliest phases of thermal subsidence to post-rift conditions characterized by stabilization of the margin and dissipation of the thermal anomaly generated during the rift phase (the rift to post-rift transition). Widespread uplift that occurred prior to and during the deposition of the lower Hamill Group is indicated by an unconformable relation with the underlying Windermere Supergroup and by stratigraphic relations between Middle and Upper Proterozoic strata and unconformably overlying upper Lower Cambrian quartz arenites (upper Hamill Group) in the southern borderlands of the Hamill basin. In addition, the coarse grain size, the feldspar content, the depositional setting, and the inferred provenance of the lower Hamill Group are all indicative of the activation of basement sources along the margins of the Hamill basin. Geologic relations within the Hamill Group that provide direct evidence for extensional tectonism include the occurrence of thick sequences of mafic metavolcanics and rapid vertical facies changes that are suggestive of syndepositional tectonism.Evidence of extensional tectonism in the Hamill Group directly supports inferences derived from tectonic subsidence analyses that indicate the rift phase that immediately preceded early Paleozoic post-rift cooling could not have occurred more than 10–20 Ma prior to 575 ± 25 Ma. These data, together with recently reported isotopic data that suggest deposition of the Windermere Supergroup began ~730–770 Ma, indicate that the rift-like deposits of the Windermere Supergroup are too old to represent the rifting that led directly to the deposition of the Cambro-Ordovician post-rift strata. Instead, Windermere sedimentation was apparently initiated by an earlier rift event, probably of regional extent, that was part of a protracted, episodic rift history that culminated with continental breakup in the latest Proterozoic – Early Cambrian.

You do not currently have access to this article.