Baffin Bay is a small ocean basin that connects the Arctic and Atlantic oceans. The adjacent continental shelves have been extensively reworked during Quaternary glaciation. The shelf break generally lies between 200 and 500 m. The continental slope passes directly into the abyssal plain of Baffin Bay basin without any major submarine canyon – deep-sea fan system being present, except for a large smooth sediment apron in northern Baffin Bay.On the basis of over 50 piston cores, six Quaternary sediment facies are distinguished from detrital mineralogy (reflected in colour) and sediment texture. Facies A, B, and C are predominantly ice-rafted or are debris flow deposits, each with a distinct mineralogy. Facies D is turbidites and bottom-current sorted sands, silts, and muds. Facies E is hemipelagic sediment. Facies F consists of sediments ranging from slumps, through debris flow deposits, to fine-grained turbidites, with a distinctive provenance in northern Baffin Bay.These sediment facies appear to be partly controlled by glacial conditions. Hemipelagic facies E predominates during the present interglacial. During glacial stages, facies D turbidites were deposited. They resulted from slumping of proglacial sediments on the continental slopes off Greenland and Baffin Island. Facies C and F occurred on the continental slopes at these times. Ice-rafted facies A and B predominate at several horizons, reflecting a rapid breakup of ice shelves in northern Baffin Bay and increased rates of iceberg melting within the Bay. Overall sedimentation rates are relatively low, reflecting dry-base ice sheets in source areas.Deep-sea channel systems floored by sorted coarse sediments and bounded by muddy levees are absent in Baffin Bay, in contrast to mid-latitude glaciated continental margins off eastern Canada. These channel systems are the result of melting of wet-base glaciers, which provide a localized supply of sediment that is sorted by ice margin processes. In Baffin Bay, most glacial sediments are derived by calving of icebergs, probably from dry-base glaciers. Sediments are gradually released over large areas as the bergs melt, and are subsequently redistributed by debris flows.

You do not currently have access to this article.