Abstract

The mid-Cretaceous Spuzzum and Porteau plutons of the Coast Plutonic Complex of British Columbia have two magnetizations, A and B. The A magnetization (eight sites, 83 specimens, D = 30.3°, I = 56.7°, α95 = 4.9°, paleolatitude = 37 ± 5°N, paleopole 65.0°N, 14.9°W, A95 = 6.2°) is considered to have been acquired in the age range 105–90 Ma. This result differs from the field established for cratonic North America in this time range. The difference could be caused either by previously undetected tilting about a horizontal axis of the plutons, or by their rotation about a vertical axis and lateral displacement relative to the craton. Previously observed mid-Cretaceous magnetizations from other rock units from the western Canadian Cordillera and the Cascades of Washington, United States, are similarly discordant with respect to the craton. This similarity over such a large area indicates that, although local undetected tilting could be partly responsible, it is unlikely to be the prime cause, and we argue therefore that lateral displacement and rotation have occurred. It would seem that much of the western part of the Canadian Cordillera has moved north by about 2400 km and rotated clockwise since the mid-Cretaceous. The paleolatitude of the southern Coast Plutonic Complex of British Columbia is statistically identical to that recently observed (39 ± 3°N) for three plutons from the Central Sierra Nevada of California, which raises the possibility that the two complexes were much closer together at the time of their emplacement than at present. The second magnetization called B (four sites, 27 specimens, D = 5.1°, I = 67.6°, α95 = 4.7°, paleopole 86.5°N, 51.2°W) is parallel to the mid-Tertiary field, as previously determined from nearby intrusions, and is considered to be an overprint acquired during regional heating and low-grade metasomatism. Some earlier paleomagnetic studies of mid-Cretaceous rocks from the Coast Plutonic Complex indicated either an absence of displacement or uncertain evidence for it, and we attribute this to the nonrecognition, in this earlier work, of similar magnetically stable overprints of Tertiary age. Overprints in several Triassic rock units in the western Cordillera are parallel to the A magnetization, indicating that the mid-Cretaceous and the mid-Tertiary probably were periods of severe magnetic overprinting in British Columbia. Mid-Cretaceous and Late Triassic results from the western Cordillera of British Columbia are systematically different, indicating that movements relative to the craton occurred between these times.

You do not currently have access to this article.