Abstract

COCORP deep seismic reflection profiling in the Adirondack Mountains of northern New York State has revealed a prominent zone of layered reflectors in the lower crust of the east-central Adirondacks. The strong, layered reflectors (here termed the Tahawus complex) occur between 18 and 26 km depth, beneath the sparsely reflective, granulite-grade, surface terrane, which has been uplifted from depths greater than 20 km. The Tahawus complex apparently represents layered rocks of some type in the lower crust of the Adirondacks. Possibilities include gneissic layering, cumulate igneous layering, a layered sill complex, and underthrust sedimentary strata, The Tahawus complex may be spatially coincident with a previously detected, high-conductivity zone in the lower crust, suggesting that either unusual mineralogies or interstitial electrolytes are present in the Tahawus complex. In contrast to layered reflections discovered in the lower crust of the east-central Adirondacks and southeast of the Adirondacks, cross-cutting and discontinuous reflections are recorded from the upper crust on all the COCORP Adirondack lines, including lines in both the Adirondack Highlands and Lowlands. Available three-dimensional control suggests that reflections in the upper crust of the central Adirondacks are parallel to, and hence may be related to, the folded gneisses mapped at the surface. Shallow events are also observed on a COCORP profile close to the epicenter of the 7 October 1983 magnitude 5.2 earthquake in the central Adirondacks, but their relation to the earthquake is uncertain.

You do not currently have access to this article.