K–Ar dates and U–Pb zircon dates define three periods of igneous activity in the southern Kootenay Arc: (1) emplacement of late-synkinematic to post-kinematic granodioritic plutons in mid-Jurassic time (170–165 Ma) accompanying amphibolite-facies regional metamorphism; (2) emplacement of post-kinematic granitic plutons in mid-Cretaceous time (~100 Ma); and (3) emplacement of small bodies of syenite in Eocene time (~50 Ma) in the western part of the area. Micas from mid-Jurassic plutons that yield the oldest K–Ar dates (158–166 Ma) also yield plateau-shaped 40Ar/39Ar age spectra. Age spectra for biotites younger than these but older than 125 Ma reflect thermal overprinting.In southeastern British Columbia, the Kootenay Arc marks the transition from the North American rocks of the Cordilleran miogeocline to the tectonic collage of allochthonous terranes that have been accreted to it.Deformation, metamorphism, and plutonism recorded in rocks of the southern Kootenay Arc commenced in mid-Jurassic time as a composite allochthonous terrane was accreted to and overlapped the western margin of North America. The geochronology and metamorphic geothermobarometry show that in less than 10 Ma between 166 and 156 Ma: (1) rocks as young as the late Proterozoic Windermere Supergroup and the early Paleozoic Lardeau Group were carried rapidly to depths of 20–24 km while being deformed and intruded by granitic rocks of a hornblende–biotite suite that were also being emplaced at a much shallower level in the overriding allochthonous terrane; and (2) the miogeoclinal rocks of the Windermere Supergroup in the southern Kootenay Arc were then uplifted by more than 7 km at an estimated rate of 2 mm/year, and thrust over the allochthonous terrane prior to being intruded by post-kinematic granitic rocks, many of which belong to the two-mica suite of mid-Cretaceous age..

You do not currently have access to this article.