Aphebian metapelites and quartzofeldspathic rocks from the Grenville Province south of the Labrador Trough display progressive changes in mineral assemblages as a result of Grenvillian metamorphism, consistent with variation in grade from greenschist to upper amphibolite facies. The following metamorphic zones have been delineated: (i) chlorite–muscovite; (ii) chlorite–muscovite–biotite; (iii) chlorite–muscovite–biotite–garnet; (iv) muscovite–staurolite–kyanite; (v) muscovite–garnet–biotite–kyanite; (vi) muscovite–garnet–biotite–kyanite–granitic veins; (vii) K–feldspar–kyanite – granitic veins; (viii) K-feldspar–sillimanite–granitic veins. Reactions linking the lower grade metamorphic zones are interpreted to be dehydration phenomena, whilst anatectic reactions occur at higher grades. At lower metamorphic grades aH2O was high graphic but it declined progressively as water entered the melt phase during higher grade anatectic reactions. With the onset of vapour-absent anatexis, the restite assemblage became essentially "dry" graphic, and biotite breakdown occurred in granulite-facies rocks east of the study area. Consideration of available experimental data suggests that metamorphic temperatures ranged from approximately 450 to 750 °C across the study area. Lithostatic pressure during metamorphism reached about 8 kbar (800 MPa) in the high-grade zones, with estimates at lower grades being poorly constrained; however, a steep pressure gradient across the map area is postulated.This is the first reported occurrence of bathozone 6 assemblages from a progressive metamorphic sequence, and it indicates the presence of an unusually great thickness of supracrustal rocks during the Grenvillian Orogeny. This was achieved by imbricate stacking of thrust slices, perhaps doubling the thickness of the crust in the Grenville Front Tectonic Zone, creating a huge gravity anomaly of which a remnant still persists today.

You do not currently have access to this article.