Abstract

The Leech River complex 45 km northwest of Victoria consists of metamorphosed pelitic rocks, sandstone, and minor volcanic rocks, chert, and conglomerate of probable Late Jurassic to Cretaceous age. The assemblage experienced two similar deformational events during which regional shortening induced macroscopic east-plunging folds and related coaxial, mesoscopic linear structures, parasitic folds, and axial-plane cleavages. Fragmentation along the developing cleavages disrupted layering and eventually led to transposition during both events. Regional, progressive, low-pressure greenschist- to amphibolite-facies (andalusite–staurolite–biotite) metamorphism began during the first deformation and extended into the waning stages of the second. Intrusion of composite felsic sills was synchronous with deformation and metamorphism, which concluded about 39–41 Ma, according to K–Ar data. The Leech River fault, which forms the southern boundary of the complex, is a zone of two to four subparallel faults. All are relatively straight, narrow faults that appear to dip steeply. This structure is interpreted to be a left-lateral strike-slip fault, active exclusively after the 39–41 Ma conclusion of metamorphism and deformation.The Leech River complex originally may have accumulated somewhere along a late Mesozoic convergent margin, but there is no evidence that it either constitutes a subduction complex per se or was metamorphosed in such a setting in early Tertiary time. The Leech River complex is interpreted to be allochthonous with respect to the bulk of Vancouver Island, since neither older rocks of the Insular Belt (Wrangellia) to the north nor coeval rocks in northwestern Washington record the early Tertiary deformations and synkinematic low-pressure metamorphism. The complex apparently was derived from a cryptic terrane to the west and emplaced against Vancouver Island by left-lateral slip on the San Juan fault after 39–41 Ma.

You do not currently have access to this article.