Mara Lake, British Columbia straddles the boundary between the Monashee Group on the east and the Mount Ida Group on the west. Correlation of units across the southern end of Mara Lake indicates lithologic continuity between parts of the groups. Both groups have experienced four phases of deformation. Phases one and two are tight and recumbent, trending to the north and to the west, respectively. Phases three and four are open to closed and upright, trending northwest and northeast, respectively. Second-phase deformation includes large-scale tectonic slides that separate areas of consistent vergence. Slide surfaces are folded by third- and fourth-phase structures and outline domal outcrop patterns. Metamorphic grade increases from north to south along the west side of Mara Lake. Calc-silicate reactions involving the formation of diopside are characteristic. From west to east increasing grade is evident in the reaction of muscovite + quartz producing sillimanite + K-feldspar + water. These prograde reactions are related to relative position in the second-phase structure. The highest grade is located near the lowest slide surface. Greenschist conditions accompanied phase-three deformation. Fourth phase is characterized by hydrothermal alteration, brittle fracturing, and local faulting. First-phase deformation appears to be pre-Late Triassic whereas second and third phases are post-Late Triassic and pre-Cretaceous. The fourth phase is part of a regional Tertiary event. The third folding event is correlated with the development of the Chase antiform and the second-phase folding is related to the pervasive east–west fabric of the Shuswap Complex. The timing of these events indicates that the metamorphic core zone of the eastern Cordillera was relatively rigid during the late Mesozoic foreland thrust development. Ductile deformation significantly preceded thrusting and developed a fabric almost at right angles to the trend of the thrust belt.

You do not currently have access to this article.