Abstract

The various parameters used to predict on a regional scale the lateral and vertical extension of permafrost are the following: surface temperature, thermal conductivity of rocks, and geothermal flow configuration. Locally this type of data is generally not sufficient and far too inaccurate. The use of geophysical methods at the surface and in boreholes in addition to existing thermal data helps to improve the degree of accuracy in the prediction of spatial distribution of permafrost in a given area. These geophysical methods include seismic refraction, electrical resistivity, and spontaneous and induced polarizations.Because of the properties of permafrost, seismic refraction at surface is useful only to determine the top of the permafrost whereas electrical resistivity (electric logging near surface) allows the determination of the upper and lower limits of permafrost. Seismic refraction, resistivity, and spontaneous and induced polarizations in boreholes were deemed more promising to determine masses or lenses of permafrost.Moreover, it was possible to correlate temperature and electrical resistivity measurements in boreholes, thus allowing the drawing of isothermal curves from electric logging in areas of continuous and discontinuous permafrost, at least when it is 'marginal'.The data for this study were obtained from the experimental station at Schefferville, Québec. [Journal Translation]

You do not currently have access to this article.