Clays are used widely as facial masks to remove excess sebum, an oily substance released onto the skin. Smectite, illite, kaolinite, and in some cases, chlorite, are the dominant phyllosilicates in most commonly used clay facial masks. To date, the adsorption of human sebum has been proved only on smectite clays; in the present study the adsorption of two organic compounds found in human sebum by illitic, kaolinitic, and chloritic phyllosilicates was investigated. Illitic clays are often used in cosmetic clay masks, but usually contain some fine-grained non-clay minerals. The presence of carbonate, for example, can cause skin irritation because of its alkaline nature, and iron oxides and hydroxides reduce the adsorption properties of clays. The influence of the removal of these compounds on the adsorption properties of illitic clays was also investigated. The amounts of both compounds adsorbed were established by UV-VIS spectrophotometry. All samples were characterized by mineralogical composition, particle-size distribution, specific surface area, and cation exchange capacity (CEC). Oleic acid and squalene were adsorbed on all clay samples, but illitic and chloritic phyllosilicates showed the greatest adsorption capacity. After purification, the sizes of the particles decreased and the CEC values increased. Nevertheless, the dissolution of carbonates essentially had no influence on the adsorption properties, whereas the removal of iron oxides and hydroxides increased significantly the amounts adsorbed of both oleic acid and squalene.

You do not currently have access to this article.