Abstract

A new model is proposed for analysis of the source clays used to create ceramics, based on geographic, petrographic, mineralogical, mineral-chemistry, and geochemical criteria. The development of this model became feasible after the discovery of a Pliocene volcanic clay horizon on NW Aegina Island, Greece. The volcanic clay contains smectite, mixed-layer chloritesmectite, biotite, and palygorskite and has greater feldspar content than the underlying Pliocene marls, which contain R0 mixed-layer illitesmectite, mica, dolomite, serpentine, talc and gypsum, and, in some places, palygorskite. The two units have distinct geochemical characteristics. In general the Pliocene volcanic clay is richer in SiO2, Al2O3, and Fe2O3 and poorer in Na2O, MgO, and P2O5 than the Pliocene marls. The Nb, Zr, Hf, Th, and rare earth element (REE) contents are also significantly greater in the Pliocene volcanic clay and comparable to those of the dacitic rocks of the island, reflecting the volcanic origin of the clay.

The proposed model was used to identify the source-clay materials that were used for the production of ceramics on the island of Aegina (Aeginetan Ware). All five criteria should be considered in any provenance study. The use of individual criteria on their own can lead to ambiguous conclusions. In the present study the geochemical criterion was particularly helpful. It provided robust evidence for the nature of the source clay. The Pliocene volcanic clay horizon and the underlying Pliocene marls are the candidate raw materials for Aeginetan Ware. Although the Pliocene marls have been invoked as raw materials for Greek Bronze Age (~3000–1100 BC) Aeginetan ceramics and are used as raw materials by modern Aeginetan ceramists, the geochemical characteristics of a large set of Bronze Age Greek Aeginetan sherds with fine and coarse fabrics coincide with those of the Pliocene volcanic clay. This comparative and cumulative evidence suggests that the Pliocene volcanic clay was the main source clay for ancient Aeginetan ceramics, regardless of the fabric (coarse or fine) and that admixture of different sources might not be necessary for fine-grained ceramics.

You do not currently have access to this article.