Supercritical carbon dioxide (scCO2) processing has been proven as a method for preparing polymer/montmorillonite (MMT) nanocomposites with improved platelet dispersion. The influence of scCO2 processing on the shape and size of the MMT tactoid/platelet, which is of great importance to the final platelet dispersion in the polymer matrix, is scarcely reported in the literature. In the present study, the pristine MMT was first surface modified with 3-glycidoxypropyltrimethoxysilane (the grafted MMT is labeled as GMMT), and then intercalated using three kinds of intercalating agents, myristyltrimethylammonium bromide (MTAB), tetradecyltrihexylphosphonium chloride (TDTHP), and ethoxyltriphenylphosphonium chloride (ETPC), in water or scCO2, to study the effect of intercalating agent type and intercalation method on the morphology and thermal properties of GMMT, as a part of a program devoted to the synthesis of polymer/MMT nanocomposites. The structure of intercalated GMMT was characterized by thermogravimetric analysis, X-ray powder diffraction, and scanning electron microscopy (SEM). The optimum intercalation conditions in scCO2 were established by trying a range of reaction times and pressures. The structures of intercalated GMMT obtained under optimum scCO2 conditions and water were compared. The basal spacing of GMMT intercalated in scCO2 was almost the same as that in water, and both were obviously larger than that of GMMT. The GMMT exhibited a compact spherical morphology (examined using SEM), and the surface structures (including surface morphology, surface roughness, and surface compactness) of samples intercalated in water became ‘less compact’ and the degree of the ‘compactness’ of samples intercalated in scCO2 decreased further. Whether in water or scCO2, samples intercalated with TDTHP exhibited a larger basal spacing and the extent of disorder increased compared to that for samples intercalated with MTAB. The pristine MMT was also intercalated for comparison and silane grafting was proven to contribute to the increased basal spacing and ‘less compact’ surface structure.

You do not currently have access to this article.