The conventional cauliflower-like shape of magadiite imposes serious limitations on its applications in adsorption, catalysis, ion exchange, etc. To overcome this problem, a method to prepare it with plate-like structures was developed. This novel approach is based on an interface-controlled heterogeneous nucleation process. Zirconia grinding balls with diameters of 2.0 mm were dispersed in the starting solution to provide solid–liquid interfaces. Then the starting solution with a SiO2:NaOH:H2O molar ratio of 9:2:75 was subjected to hydrothermal treatment at 433 K for 96 h. The presence of the solid–liquid interface improved the crystallization yield and controlled the morphology and specific surface area of the crystals. With the zirconia balls, the yield and sizes of the plate-like magadiite were 52 wt.% and 1–3 μm, respectively. In the absence of zirconia balls, the yield was smaller (45 wt.%) and magadiite shaped like cauliflower was formed. The plate-like magadiite had a specific surface area of 66 m2 g−1 and a pore-size distribution between 4 and 5 nm, compared with a surface area of 28 m2 g−1 for the cauliflower-like magadiite. In addition, the plate-like magadiite was a more effective ion exchanger than the cauliflower-like magadiite with a cation exchange capacity of 64.5 mmol/100 g (compared to 53.8 mmol/100 g for the cauliflower-like form) and it had a faster sorption rate for calcium ions.

You do not currently have access to this article.