Abstract

The Middle–Upper Miocene–Pliocene sediments near Polatli contain commercial sepiolitic clay deposits. The sepiolite-rich Polatli basin sediments were studied to describe the sepiolitic clay deposits of the area and to assess the environments of formation using X-ray diffraction, optical and scanning electron microscopy, and chemical analysis. The Polatli basin is an elongated, rift-related graben trending NE–SW in central Turkey, filled with continental Late Miocene to Early Pliocene sediments. The sediments which comprise claystone, marl and limestone, dolostone, and evaporites are characteristic deposits of low-salinity, playa-lake depositional environments. These sepiolite-rich deposits include sepiolite, dolomite, and calcite, with minor amounts of palygorskite, quartz, moganite, amorphous silica (opal-CT), and feldspar.

The sepiolite shows all the characteristic X-ray diffraction reflections of that mineral, whereas amorphous silica containing sepiolite shows some of the characteristic reflections of sepiolite, but with somewhat broader and less intense basal reflections. In the siliceous deposits, the long, fibrous, and filamentous aggregates of the sepiolite were converted to thick, short fibers, low in Mg, and showing transition to amorphous silica.

Major and trace elements (e.g. Si, Al, Fe, Mg, Sr, Ba, etc.) were found almost exclusively in Mg-rich smectitic claystone and detrital silicate-rich rocks, whereas Mg, Ca, and some Si were concentrated in the neoformed minerals in the basin. The rare-earth elements (REE) and some of the high-field strength elements (HFSE), large ion lithophile elements (LILE), and transition elements (TRE) patterns were similar for detrital silicate-rich rocks and formed from neoformed mineral lithologies. The REE, TRE, LILE, and some of the HFSE contents of limestone, dolostone, and sepiolitic claystone were similar while those of detrital silicate-rich rocks and Mg-rich smectitic claystones were similar to each other. PAAS-normalized REE and other trace-element patterns were typically subparallel and depleted in neoformed minerals. All sample groups had positive Eu* anomalies, except Mg-rich smectite (0.80). Limestone, dolostone, and amorphous silica compounds showed slightly negative Ce* anomalies, whereas sepiolitic claystones, Mg-rich smectitic claystones, and detrital silicate-rich rocks had a slightly positive Ce* anomaly.

You do not currently have access to this article.