Kaolin-group clay minerals can be modified to form nanotubular and mesoporous structures with interesting catalytic properties, but knowledge of the best methods for preparing these structures is still incomplete. The objective of this study was to investigate intercalation/deintercalation as a method for the delamination and rolling of kaolinite layers in relation to structural order. To prepare nanotubular material, kaolinites of different crystallinities and halloysite (all from Polish deposits) were chosen. The experimental procedure consisted of four stages: (1) preparation of a dimethyl sulfoxide precursor intercalate; (2) interlayer grafting with 1,3-butanediol; (3) hexylamine intercalation; and (4) deintercalation of amine-intercalated minerals using toluene as the solvent. Structural perturbations and changes in the morphology of the minerals were examined by X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, and transmission electron microscopy (TEM). The number of rolled kaolinite layers depended heavily on the efficiency of the intercalation steps. An increase in the structural disorder and extensive delamination of the minerals subjected to chemical treatment were recorded. Kaolinite particles which exhibited tubular morphology or showed rolling effects were observed using TEM. The nanotubes formed were ~30 nm in diameter, with their length depending on the particle sizes of the minerals.

You do not currently have access to this article.