High-charge nontronites were synthesized at 75, 90, 100, 110, 125, and 150°C from a silico-ferrous starting gel with Si2FeNa2O6.nH2O composition. This gel was oxidized in contact with air and then hydrothermally treated, for a period of 4 weeks, under equilibrium water pressure. The synthesized nontronites were similar to each other, regardless of the synthesis temperature. Their structural formula, obtained from chemical analysis, X-ray diffraction (XRD), and Fourier transform infrared (FTIR), Mössbauer, and X-ray absorption fine structure spectroscopies is: (Si3.25Fe3+0.75)Fe23+O10(OH)2Na0.75. A strictly ferric end-member of the nontronite series was therefore synthesized for the first time. The uncommon chemistry of the synthesized nontronites, notably the high level of Fe-for-Si substitution, induced particular XRD, FTIR, and differential thermal analysis-thermogravimetric analysis data. The ethylene glycol expandability of the synthetic nontronites was linked to their crystallinity and depended on the nature of the interlayer cation, moving from smectite to vermiculite-like behavior. As the synthesis temperature increased, the crystallinity of the synthesized clays increased. The nontronite obtained at 150°C had the ‘best crystallinity’, which cannot be improved by increasing synthesis time or temperature.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.