Crystal chemical analysis of various dioctahedral 2:1 phyllosilicates consisting of trans-vacant (tv) and cis-vacant (cv) layers and interstratified cv and tv layers shows that there is compositional control over the distribution of octahedral cations over trans and cis sites. Fe3+ and Mg-rich dioctahedral micas (celadonite, glauconite, leucophyllite and most phengite) occur only as tv varieties. Similarly, the occurrence of tv illites and tv illite fundamental particles in illite-smectite (I-S) does not depend significantly on the cation composition of the 2:1 layers. In contrast, compositional restrictions exist to control the occurrence of pure cv1M illite, which can form only as Fe- and Mg-poor varieties. Similarly, proportions of cv and tv layers in illite fundamental particles depend on the amount of Al in octahedral and tetrahedral sheets of the 2:1 layers.

Simulations of atomic coordinates and interatomic distances for periodic tv1M and cv1M illite structures allow us to reveal the main structural factors that favor the formation of cv layers in illite and I-S. It is shown that in contrast to the tv1M structure, interlayer K in cv1M illite has an environment which is similar to that in 2M1 muscovite. This similarity along with a high octahedral and tetrahedral Al content probably provides stability for cv1M illite in low-temperature natural environments. Because of structural control, the occurrence of monomineral cv1M illite, its association with tv 1M illite, and interstratified cv-tv illite fundamental particles is confined by certain physical and chemical conditions. These varieties are most often formed by hydrothermal activity of different origin. The initial material for their formation should be Al-rich and the hydrothermal fluids should be Mg- and Fe-poor. They occur mostly around ore deposits, in bentonites and in sandstone sedimentary rocks.

The factors governing the formation of tv and cv layers in dioctahedral smectite are probably related to the layer composition and local order-disorder in the distribution of isomorphous octahedral cations, because there is no influence from fixed interlayer cations. In particular, the occurrence of Mg-OH-Mg cation arrangements is more favorable for the formation of cv montmorillonite layers.

You do not currently have access to this article.