Abstract

The Gourougou volcanic massif (northeastern Morocco) is actively prospected for bentonite deposits. Five bentonites originating from different environments were selected for the present study: hydrothermal alteration of obsidian perlite glass inside the volcanoes themselves (Providencia and Tribia deposits); alteration of pyroclastic flows in a marine shallow water to lagoonal lacustrine environment (Ibourhardayn deposit); ash falls in marine or lacustrine systems (Moulay Rachid and Melg el Ouidan (formerly Camp Berteau) deposits). All of these bentonites were probably formed from volcanic glass originating from a rhyolitic magma at different stages of differentiation as shown by slight variations of REE and incompatible element abundances. The crystal-chemical characteristics of the smectite vary according to alteration conditions: beidellite predominates in hydrothermal systems, whereas montmorillonite predominates in lagoonal and lacustrine environments, and mixed-layer beidellite-montmorillonite in the sea-water-altered pyroclastic flows. All these dioctahedral smectites exhibit a heterogeneous distribution of charge as shown by the presence of partially expandable (1 EG) or non- expandable (0 EG) layers in the K-saturation state. The proportion of the collapsed or partially expandable layers is not related to the average layer charge or to the cation exchange capacity. This militates for an overall heterogeneous charge distribution. Compared to other natural or experimental alteration systems of similar rhyolitic glass, the formation of beidellite or montmorillonite appears to be controlled by the amounts of Mg in the system.

You do not currently have access to this article.