Two industrial bentonites, IBECO SEAL-80 and TIXOTON TE, have been proposed as potential backfill material in the German Asse salt dome, a test field for the disposal of low- to medium-grade active nuclear waste. Considering the unlikely but possible case of a barrier breakdown with infiltration of a highly concentrated salt brine, the physicochemical stability and material behavior of these bentonites in a saturated salt brine (predominantly MgCl2) at 25°C were studied over the time period of 150 days. The results show that no mineral transformations occurred throughout the duration of the experiments and minor dissolution was only active during the first days. Some chemical properties, namely sorption capability and swelling, were reduced during contact with the salt brine, but could be reversed by removing the salt after treatment. Despite restriction of the CEC in the presence of salt solution, interlayer cation exchange reactions are still active in this environment. The long-term chemical stability of smectite in salt brine is predicted under these low-temperature conditions, but the increased permeability during aggregate formation could lead to physical breakdown of the backfill component.

You do not currently have access to this article.