Abstract

The loss of K-bearing clay minerals has been observed over an 80 y cultivation period in Chinese rice paddies despite the use of NKP fertilizers. Clay mineral determinations were made in flood-irrigated paddies cultivated for 3, 10, 15, 30 and 80 y in clayey (45 wt.%), red soils derived from red Quaternary sediments. Three clay minerals are initially present in these soils: illite-mica, magnesian chlorite and an interstratified mica-aluminous chlorite mineral. This last phase was identified using computer simulations . The K-bearing phases (discrete mica and illite as well as interstratified mica layers) are to a large extent lost while the Fe content decreases in the soil as a whole and increases in the chlorite. The mica component in the mixed-layer mineral decreases also. These changes in clay mineralogy and relative abundance suggest a loss of potassic minerals and an increase in the formation of less siliceous, more ferro-magnesian chlorite. These changes occur over 30 y or less, a rather rapid, irreversible transformation of soil clay minerals. Such loss of potassic minerals renders the cultivation more dependent on fertilizer amendment.

You do not currently have access to this article.