The long, continuous deposition of dust in the Chinese loess plateau offers a unique opportunity to study the nature of Fe oxide formation in a wide range of climatic conditions. A technique to obtain quantitative estimates of the concentration of hematite and goethite in loess and paleosol samples is reported. Experiments using diffuse reflectance spectroscopy on sets of laboratory mixed and natural loess and paleosol samples show that it is possible to obtain rapid and quantitative estimates of the absolute concentration of hematite and goethite in the Chinese loess sediments. Typical loess and paleosol samples were deferrated using the CBD procedure to produce a natural matrix material to which hematite and goethite in known weight percentages were added to produce a set of calibration standards. Spectral violet, blue, green, yellow, orange, red and brightness of standards were calculated from the reflectance data and served as independent variables for a multiple linear regression analysis. The effect of changing matrix from loess to paleosol was overcome by including a variety of different loess and paleosol samples in the regression equations. The resulting calibration equations provide estimates of wt.% hematite and goethite and have correlation coefficients >0.93. The total measured hematite and goethite concentrations exhibited consistent variations with CBD extractable iron. Tests of the equations for buffering changes in matrix composition were run with samples of varying mineralogical composition (calcite, illite, etc.) and demonstrated that the equations are well buffered for changes in matrix composition from loess to paleosol.

You do not currently have access to this article.