Experiments on zeolitization were conducted on four synthetic monocationic glasses (Na, K, Ca, or Mg-rich glass) with Si/Al molar ratios of 2.67, similar in acidity to many volcanic glasses of partially zeolitized Italian tuffs. The products of the hydrothermal treatment at 100, 150, and 200 degrees C of single glasses or glass mixtures with deionized H 2 O or monosaline solutions (NaCl, KCl, CaCl 2 ) were characterized by X-ray diffraction, thermal, microscopic and chemical analyses. Chemical analyses of mother liquors were also performed. Mineral assemblages, containing chabazite, phillipsite, analcime, and K-feldspar, very similar to those found in altered, volcaniclastic alkali-trachytic or trachytic glass deposits were produced. Potassium was essential to chabazite and phillipsite crystallization, although phillipsite was obtained also in Ca-Na mixed systems. Sodium was necessary for analcime formation. Calcium plays only a secondary role in zeolitization, and magnesium does not favor zeolite crystallization but promotes the formation of smectite. Glass composition determines the mineral assemblages obtained and hence in those commonly found in nature.

You do not currently have access to this article.