The increasing demand for high-tech trace elements supports the need for systematic investigations of their primary occurrences. Mineralogy and trace element characteristics of hydrothermal base-metal veins from the Ruhr Basin (Ruhrgebiet) and the Rhenish Massif (Bergisches Land) in Germany were studied by energy-dispersive X-ray fluorescence mapping, laser ablation-ICP-mass spectrometry, and electron microprobe analyses. Quantitative trace element analysis proves elevated concentrations of Ge and Ga in sphalerite from the Ruhrgebiet. In addition to about 6 Mt of sphalerite-dominated ore, a potential of about 10 t of Ge is indicated to be concentrated in the Auguste Victoria and Graf-Moltke base-metal deposits in the Ruhrgebiet. Assessments on physicochemical fluid properties and metal sources using vitrinite reflectance analysis and host rock investigation indicate a genetic link between the Carboniferous carbonaceous rocks (hosting a number of coal seams) and significant trace metal enrichment in the veins. Gallium enrichment, outlining primary growth zones in ore stage 1 sphalerite, is facilitated by the alteration of Al-bearing minerals in adjacent host rocks due to intense fluid/rock interaction. Reduced Ga and very low In concentrations in ore stage 2 may reflect sealed fluid pathways or changes in the fluid properties. The high level of organic matter in the system probably supported enrichment of Ge in the hydrothermal fluids. The constantly high levels of fixation of Ge in sector zoning patterns of the sphalerite during both ore stages indicate a continuous supply. Elevated contents of Sb together with Cu, As, and Pb in sectors of the sphalerite grains point to a local enrichment of nanometer-scale inclusions of sulfosalt-like phases. Sphalerite of both districts and even of the two ore stages in the Ruhrgebiet shows variations in δ34S isotope compositions due to varying sulfur sources. Both the host rock composition and the presence of organic matter contributed to the trace metal enrichment in the Ruhrgebiet base-metal sulfides as compared to the low contents typical of base-metal ore from the Bergisches Land.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.