The continental margin is of profound importance as it records continental growth by accretion of orogenic magmas and following continental rifting. A high degree of mantle melting due to hydrous fluid input is expected to simultaneously stimulate continental growth and lower the intrinsic density of the mantle than more fertile mantle, which in turn isolates the continental lithosphere from the convective mantle. The mantle peridotites from Gibbs Island (South Shetland Islands) and Bruce Bank in the Drake Passage provide us an insight into the tectonic history in the circum-Antarctic region. To elucidate the continental growth of Antarctica, we present geochemical data of eight dunites from Gibbs Island and one dunite from Bruce Bank, including Re–Os isotope and highly siderophile element compositions.

The dunites are severely affected by serpentinization as evidenced by antigorite + brucite or lizardite (loss on ignition = LOI ranging from 3 to 34 wt.%) but contain primary euhedral to subhedral chromites with or without spherical inclusions. The chromites rarely form lens-shaped aggregates. A dunite from Gibbs Island contains fresh olivine grains filling a fracture in the chromite with low LOI (3 wt.%), indicating a deserpentinization origin from a precursor serpentinized dunite. The dunites show highly depleted bulk-rock major element compositions (Mg/Si = 1.4–1.6 and Al/Si = 0.004–0.01 for Gibbs Island dunites, Mg/Si = 0.66 and Al/Si = 0.008 for Bruce Bank dunite), overlapping a compositional field defined by forearc peridotites. The positive correlation in Re/Ir–LOI space corroborates Re input during the later serpentinization process. The 187Os/188Os ratios of the dunites range from 0.11907 to 0.14493.

Phanerozoic Re-depletion (melt depletion) ages of ca. 535–129 Ma are recorded in the Gibbs Island dunites, except for one with a Mesoproterozoic Re-depletion age of ca. 1.2 Ga. Since there exists serpentinization-related perturbation of Re, the ages provide minimum time estimates for melt depletion events. The early Paleozoic melt depletion is inferred to have occurred at a very early stage of Antarctic Peninsula formation in response to plate convergence along the margin of Gondwana, whereas the Mesoproterozoic Re-depletion age reflects convecting mantle heterogeneity unrelated to any nearby crust-forming events. The petrographic characteristics of the chromites and highly depleted nature of the dunites are attributed to melt–peridotite reaction in a subduction zone setting. A feasible interpretation for the dunite formation is that the mantle had experienced two stages of melting with the final stage occurring along the Gondwana continental margin in the subduction zone setting. Resultant highly refractory lithospheric mantle was later displaced and dispersed during the Gondwana breakup. Widespread existence of the dunite may be attributed to multi-stage melt depletion along the continental margin.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.