The crystal structure of a natural kosnarite, KZr2(PO4)3 from the Mario Pinto Mine, Jenipapo district, Brazil, has been determined for the first time. Kosnarite and its related synthetic compounds (NZP) are open-framework orthophosphates of the type ([6]M[8]M′′)L2(TO4)3 (where M = Li, Na, K, Rb, Cs; L = Ti, Zr, Hf; and T = P, Si). These compounds have been proposed as potential radioactive waste hosts as a result of their physiochemical properties and because their crystal structure allows for extreme isomorphism and incorporation of all 42 radioactive nuclides present in nuclear waste. Kosnarite from the Mario Pinto mine is hexagonal, Rforumlac, with a = 8.7205(1), c = 23.9436(3) Å, and V = 1576.89(4) Å3. The average chemical formula (n = 75) is (K0.96Na0.02)Σ0.98(Zr1.93Hf0.08)Σ1.01(P2.99Si0.01)Σ3.00O12. The structure contains one six-coordinated Zr site (L), one four-coordinated P site (T), and a six-coordinated K site (M′); in kosnarite, the M″ site is vacant. The average bond lengths in the ZrO6 octahedra (2.0646 Å) and PO4 tetrahedra (1.5278 Å) are slightly larger than those observed in the synthetic analogue (<Zr–O> = 2.063 Å, <P–O> = 1.522 Å). The ZrO6 octahedra and PO4 tetrahedra share corners to form ribbons of [Zr2(PO4)3] units parallel to the c axis, which are further joined by PO4 tetrahedra perpendicular to c to form a 3D network. Kosnarite is one of only five natural alkali zircono-orthophosphates, all of which are late-stage hydrothermal minerals. Although synthetic Na-dominant endmember analogues of kosnarite exist, the distortions in the structure with respect to the M and L octahedra, along with experimental evidence at hydrothermal temperatures, suggest that only K (or Li) endmembers are possible in nature.

You do not currently have access to this article.