Abstract

This paper presents the first major and trace element compositions of mantle-derived garnet xenocrysts from the diamondiferous No. 30 kimberlite pipe in the Wafangdian region, and these are used to constrain the nature and evolution of mantle metasomatism beneath the North China Craton (NCC). The major element data were acquired using an electron probe micro-analyzer and the trace element data were obtained using laser ablation inductively coupled plasma-mass spectrometry. Based on Ni-in-garnet thermometry, equilibrium temperatures of 1107–1365 °C were estimated for peridotitic garnets xenocrysts from the No. 30 kimberlite, with an average temperature of 1258 °C, and pressures calculated to be between 5.0 and 7.4 GPa. In a CaO versus Cr2O3 diagram, 52% of the garnets fall in the lherzolite field and 28% in the harzburgite field; a few of the garnets are eclogitic. Based on rare earth element patterns, the lherzolitic garnets are further divided into three groups. The compositional variations in garnet xenocrysts reflect two stages of metasomatism: early carbonatite melt/fluid metasomatism and late kimberlite metasomatism. The carbonatite melt/fluids are effective at introducing Sr and the light rare earth elements, but ineffective at transporting much Zr, Ti, Y, or heavy rare earth elements. The kimberlite metasomatic agent is highly effective at element transport, introducing, e.g., Ti, Zr, Y, and the rare earth elements. Combined with compositional data for garnet inclusions in diamonds and megacrysts from the Mengyin and Wafangdian kimberlites, we suggest that these signatures reflect a two-stage evolution of the sub-continental lithospheric mantle (SCLM) beneath the NCC: (1) early-stage carbonatite melt/fluid metasomatism resulting in metasomatic modification of the SCLM and likely associated with diamond crystallization; (2) late-stage kimberlite metasomatism related to the eruption of the 465 Ma kimberlite.

You do not currently have access to this article.