Abstract

Whiskers and needles of F-rich vesuvianite were found together with diopside in cavities of an altered magnesian skarn in the Tas–Khayakhtakh Mountains of Polar Yakutia, in Russia. The acicular crystals are strongly zoned and formed between two generations of diopside. The chemical composition of the vesuvianite whiskers is more homogeneous and resembles that of the outermost rim of the vesuvianite needles. In the last stage, fluorapophyllite, prehnite, titanite, calcite and quartz overgrew vesuvianite. Whiskers of vesuvianite crystallized at low activity of CO2 and P–T conditions corresponding to the prehnite–pumpellyite facies. Single-crystal X-ray refinements of the structure of three vesuvianite whiskers, for which electron-microprobe data also were collected, revealed P4/nnc space-group symmetry and (F, Cl) substitution at O(10) within disordered strings running parallel to the four-fold axis. In addition, there is partial substitution of F at O(11), usually occupied by OH in low-temperature vesuvianite. The high symmetry (P4/nnc) in low-temperature (<350°C) whiskers of vesuvianite adds evidence that the degree of string order is determined not only by the temperature of crystallization, as hitherto assumed, but also by the prevailing composition of the fluid and the regime of crystal growth leading to substitutions that disturb intra-rod order and particularly long-range rod order. Long-range rod order leads to reduced symmetry (P4/n or P4nc), typical of vesuvianite crystallized at low temperature in rodingites. Vesuvianite whiskers formed in a kinetic regime where the growth rates were selectively influenced by surface-active substances poisoning the prism faces. Growth of faces in vesuvianite whiskers is explained by a tangential layer-by-layer mechanism without participation of a central screw dislocation.

Abstract

Nous avons découvert des trichites et des aiguilles de vésuvianite riche en fluor avec diopside dans des cavités d’un skarn magnésien altéré dans les montagnes Tas–Khayakhtakh, en Yakoutie polaire, en Russie. Les cristaux aciculaires sont fortement zonés et se sont formés entre deux générations de diopside. La composition chimique de la vésuvianite trichitique est plus homogène, et ressemble à celle de la bordure des aiguilles de vésuvianite. Au stade ultime de croissance, fluorapophyllite, prehnite, titanite, calcite et quartz ont englobé la vésuvianite. Les trichites de vésuvianite ont cristallisé à une faible activité de CO2 à des conditions de P et de T correspondant au faciès prehnite–pumpellyite. Des affinements de la structure par diffraction X sur trois monocristaux trichitiques, pour lesquels nous possédons des données sur la composition obtenues par analyses à la microsonde électronique, révèlent une symétrie P4/nnc et une substitution de (F,Cl) au site O(10) au sein d’agencements linéaires ou tiges désordonnés le long de l’axe d’ordre 4. De plus, il y a substitution partielle de F au site O(11), où loge normalement un groupe OH dans la vésuvianite de basse température. La symétrie élevée (P4/nnc) des trichites formées à faible température (<350°C) viendrait renforcer l’hypothèse voulant que le degré d’ordre dans ces agencement linéaires dépend non seulement de la température de cristallisation, comme on l’avait supposé antérieurement, mais aussi de la composition de la phase fluide et des conditions de croissance cristalline menant à des substitutions qui dérangent l’ordre le long des tiges, et particulièrement qui entravent l’ordre à longue échelle. Une mise en ordre à longue échelle mène à une symétrie réduite (P4/n ou P4nc), typique de la vésuvianite cristallisée à faible température, dans les rodingites. Les trichites de vésuvianite se sont formées dans un milieu de croissance où les taux de croissance étaient sélectivement influencés par des substances empoisonant les faces prismatiques. La croissance des faces dans les trichites de vésuvianite serait due à un mécanisme tangentiel de croissance couche par couche sans la participation d’une dislocation vis centrale.

(Traduit par la Rédaction)

You do not currently have access to this article.