- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Altiplano (1)
-
Puna (1)
-
South America
-
Andes
-
Eastern Cordillera (1)
-
-
Argentina
-
Pampean Mountains (1)
-
San Juan Argentina (1)
-
-
Brazil
-
Brazilian Shield (1)
-
-
Chile (1)
-
-
-
Primary terms
-
crust (1)
-
earthquakes (1)
-
geophysical methods (1)
-
mantle (2)
-
ocean floors (1)
-
plate tectonics (2)
-
South America
-
Andes
-
Eastern Cordillera (1)
-
-
Argentina
-
Pampean Mountains (1)
-
San Juan Argentina (1)
-
-
Brazil
-
Brazilian Shield (1)
-
-
Chile (1)
-
-
Imaging the Nazca slab and surrounding mantle to 700 km depth beneath the central Andes (18°S to 28°S)
The central Andes in South America is an ideal location to investigate the interaction between a subducting slab and the surrounding mantle to the base of the mantle transition zone. We used finite-frequency teleseismic P-wave tomography to image velocity anomalies in the mantle from 100 to 700 km depth between 18°S and 28°S in the central Andes by combining data from 11 separate networks deployed in the region between 1994 and 2009. Deformation of the subducting Nazca slab is observed in the mantle transition zone, with regions of both thinning and thickening of the slab that we suggest are related to a temporary stagnation of the slab in the mantle transition zone. Our study also images a strong low-velocity anomaly beneath the Nazca slab in the mantle transition zone, which is consistent with either a local thermal anomaly or a region of hydrated material. The shallow mantle (<165 km) under the Eastern Cordillera is generally fast, consistent with proposed underthrusting of the Brazilian cratonic lithosphere or a string of localized lithospheric foundering. Several discontinuous low-velocity anomalies are observed beneath parts of the Altiplano and Puna Plateau, including two strong low-velocity anomalies in the upper mantle under the Los Frailes volcanic field and the southern Puna Plateau, consistent with proposed asthenospheric influx following lithospheric delamination.
Flat-slab subduction and crustal models for the seismically active Sierras Pampeanas region of Argentina
The Sierras Pampeanas in the west-central part of Argentina are a modern analog for Laramide uplifts in the western United States. In this region, the Nazca plate is subducting beneath South America almost horizontally at about ~100 km depth before descending into the mantle. The flat-slab geometry correlates with the inland prolongation of the subducted oceanic Juan Fernández Ridge. This region of Argentina is characterized by the termination of the volcanic arc and uplift of the active basement-cored Sierras Pampeanas. The upper plate shows marked differences in seismic properties that are interpreted as variations in crustal composition in agreement with the presence of several Neoproterozoic to Paleozoic accreted terranes. In this paper, we combine the results from the CHile-ARgentina Geophysical Experiment (CHARGE) and the CHile-ARgentina Seismology Measurement Experiment (CHARSME) passive broadband arrays to better characterize the flat-slab subduction and the lithospheric structure. Stress tensor orientations indicate that the horizontal slab is in extension, whereas the upper plate backarc crust is under compression. The Cuyania terrane crust exhibits high P-wave seismic velocities (Vp ~6.4 km/s), high P- to S-wave seismic velocity ratios (Vp/Vs = 1.80–1.85), and 55–60 km crustal thickness. In addition, the Cuyania terrane has a high-density and high-seismic-velocity lower crust. In contrast, the Pampia terrane crust has a lower Vp value of 6.0 km/s, a lower Vp/Vs ratio of 1.73, and a thinner crust of ~35 km thickness. We integrate seismic and gravity studies to evaluate crustal models that can explain the unusually low elevations of the western Sierras Pampeanas. Flat-slab subduction models based on CHARGE and CHARSME seismic data and gravity observations show a good correlation with the predicted Juan Fernández Ridge path beneath South America, the deep Moho depths in the Andean backarc, and the high-density and high-seismic-velocity lower crust of the Cuyania terrane. The Cuyania terrane is also the region characterized by more frequent and larger-magnitude crustal earthquakes.