- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Abstract A systematic survey was undertaken and an investigation carried out into the geomorphological characteristics of lobate debris aprons in the Tempe Terra region of Mars. Based on the most recent high-resolution (sub 15 m per pixel) imagery and on new topography data, this study endeavoured to raise and discuss questions regarding their formation (emplacement) and modification (deformation sequence), as well as the role of a mantling deposit found at mid-latitude locations on Mars. Furthermore, a model for the formation of debris aprons in the Tempe Terra–Mareotis Fossae settings is proposed. Image survey, in combination with basic morphometric observations within a geomorphological context, provided additional insights into the source, emplacement and modification of hillslope debris material. Our results imply that lobate debris aprons are not mainly relicts of remnant degradation but are substantially composed of mantling material probably deposited episodically in the course of planetary obliquity changes and over a long timespan, as derived erosion rates suggest. Crater-size frequency statistics and the derivation of absolute ages show ages of sub-recent modification and document earlier resurfacing events.
Landscape evolution in Martian mid-latitude regions: insights from analogous periglacial landforms in Svalbard
Abstract Periglacial landforms on Spitsbergen (Svalbard, Norway) are morphologically similar to landforms on Mars that are probably related to the past and/or present existence of ice at or near the surface. Many of these landforms, such as gullies, debris-flow fans, polygonal terrain, fractured mounds and rock-glacier-like features, are observed in close spatial proximity in mid-latitude craters on Mars. On Svalbard, analogous landforms occur in strikingly similar proximity, which makes them useful study cases to infer the spatial and chronological evolution of Martian cold-climate surface processes. The analysis of the morphological inventory of analogous landforms on Svalbard and Mars allows the processes operating on Mars to be constrained. Different qualitative scenarios of landscape evolution on Mars help to better understand the action of periglacial processes on Mars in the recent past.
Layering and degradation of the Rupes Tenuis unit, Mars – a structural analysis south of Chasma Boreale
Abstract The circum north-polar Rupes Tenuis unit forms the polar-proximal basal stratigraphical and morphological units that delineate the north polar cap between 180° and 300°E. In the region of the mouth of the Chasma Boreale re-entrant, the Rupes Tenuis unit is likely to extend further southwards into the northern plains. This is suggested by the occurrence of isolated remnants that have been interpreted as basaltic shield volcanoes, maar craters or mud volcanoes in the past. As key elements of this study, we assessed the quantitative characteristics of this unit using layer attitudes derived from high-resolution images and terrain-model data, and by performing cross-correlations of prominent layers whose outcrops are observed at eight cone-like remnants. The identification and unambiguous correlation of characteristic layers across the study area provided a reasonable basis for introducing at least three additional stratigraphical subunits of the Rupes Tenuis unit. Extrapolation of altitude data indicates a gentle southward dip of remnant layers, suggesting that the unit had a much larger areal extent in Martian history. The palaeo-layer contact between two subunits of the Rupes Tenuis unit correlates well with elevation values of the Hyperborea Lingula surface. Both results disagree with an interpretation of a volcanic origin for isolated mesas but underpin that they are erosional relicts of the Rupes Tenuis unit. Average erosion rates of 2.5×10 −4 ±4×10 −5 mm year −1 are relatively high when compared to Amazonian rates but are not exceptional for areas undergoing deflation. They also corroborate the idea of aeolian denudation of the Rupes Tenuis unit.