- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
East Africa (1)
-
West Africa
-
Mauritanides (1)
-
-
-
Arctic region
-
Greenland (1)
-
-
Atlantic Ocean
-
North Atlantic (1)
-
-
Europe
-
Central Europe
-
Bohemian Massif (2)
-
Czech Republic
-
Barrandian Basin (1)
-
-
Germany
-
Saxony Germany (1)
-
-
-
Southern Europe
-
Iberian Peninsula (1)
-
-
Tornquist-Teisseyre Zone (1)
-
Western Europe
-
France (1)
-
United Kingdom
-
Great Britain
-
Scotland
-
Scottish Highlands
-
Grampian Highlands (1)
-
-
-
-
-
-
-
North America
-
Appalachians (2)
-
-
Russian Platform (1)
-
United States
-
New England (1)
-
-
-
commodities
-
metal ores
-
gold ores (1)
-
tin ores (1)
-
tungsten ores (1)
-
uranium ores (1)
-
-
mineral deposits, genesis (1)
-
placers (1)
-
-
elements, isotopes
-
isotope ratios (2)
-
isotopes
-
radioactive isotopes
-
Pb-206/Pb-204 (2)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
-
stable isotopes
-
Nd-144/Nd-143 (2)
-
Pb-206/Pb-204 (2)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
Sr-87/Sr-86 (2)
-
-
-
metals
-
actinides (1)
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (2)
-
-
-
lead
-
Pb-206/Pb-204 (2)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (2)
-
-
-
-
-
geochronology methods
-
paleomagnetism (1)
-
-
geologic age
-
Cenozoic
-
Quaternary (1)
-
-
Mesozoic (1)
-
Paleozoic
-
Cambrian
-
Acadian (1)
-
-
Carboniferous (2)
-
Devonian
-
Old Red Sandstone (1)
-
-
lower Paleozoic (1)
-
Ordovician
-
Lower Ordovician (1)
-
-
Permian (1)
-
Silurian (2)
-
-
Precambrian
-
Archean (1)
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic (2)
-
-
-
-
Rhenohercynian (1)
-
Saxothuringian (1)
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
granites (1)
-
pegmatite (1)
-
ultramafics (1)
-
-
volcanic rocks
-
basanite (1)
-
-
-
-
metamorphic rocks
-
metamorphic rocks
-
granulites (2)
-
-
-
Primary terms
-
Africa
-
East Africa (1)
-
West Africa
-
Mauritanides (1)
-
-
-
Arctic region
-
Greenland (1)
-
-
Atlantic Ocean
-
North Atlantic (1)
-
-
Cenozoic
-
Quaternary (1)
-
-
crust (4)
-
deformation (1)
-
Europe
-
Central Europe
-
Bohemian Massif (2)
-
Czech Republic
-
Barrandian Basin (1)
-
-
Germany
-
Saxony Germany (1)
-
-
-
Southern Europe
-
Iberian Peninsula (1)
-
-
Tornquist-Teisseyre Zone (1)
-
Western Europe
-
France (1)
-
United Kingdom
-
Great Britain
-
Scotland
-
Scottish Highlands
-
Grampian Highlands (1)
-
-
-
-
-
-
-
faults (2)
-
folds (1)
-
geochemistry (1)
-
igneous rocks
-
plutonic rocks
-
granites (1)
-
pegmatite (1)
-
ultramafics (1)
-
-
volcanic rocks
-
basanite (1)
-
-
-
inclusions (1)
-
isotopes
-
radioactive isotopes
-
Pb-206/Pb-204 (2)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
-
stable isotopes
-
Nd-144/Nd-143 (2)
-
Pb-206/Pb-204 (2)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
Sr-87/Sr-86 (2)
-
-
-
lava (1)
-
mantle (2)
-
Mesozoic (1)
-
metal ores
-
gold ores (1)
-
tin ores (1)
-
tungsten ores (1)
-
uranium ores (1)
-
-
metals
-
actinides (1)
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (2)
-
-
-
lead
-
Pb-206/Pb-204 (2)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (2)
-
-
-
-
metamorphic rocks
-
granulites (2)
-
-
metamorphism (2)
-
metasomatism (1)
-
mineral deposits, genesis (1)
-
North America
-
Appalachians (2)
-
-
orogeny (3)
-
paleogeography (2)
-
paleomagnetism (1)
-
Paleozoic
-
Cambrian
-
Acadian (1)
-
-
Carboniferous (2)
-
Devonian
-
Old Red Sandstone (1)
-
-
lower Paleozoic (1)
-
Ordovician
-
Lower Ordovician (1)
-
-
Permian (1)
-
Silurian (2)
-
-
placers (1)
-
plate tectonics (4)
-
Precambrian
-
Archean (1)
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic (2)
-
-
-
-
sea-floor spreading (1)
-
sea-level changes (1)
-
sedimentary rocks
-
clastic rocks
-
black shale (1)
-
-
-
tectonics (2)
-
United States
-
New England (1)
-
-
weathering (1)
-
-
sedimentary rocks
-
flysch (1)
-
sedimentary rocks
-
clastic rocks
-
black shale (1)
-
-
-
siliciclastics (1)
-
-
sediments
-
siliciclastics (1)
-
ABSTRACT The Paleozoic plate boundary zone between Laurussia and Gondwana in western Pangea hosts major magmatic and hydrothermal Sn-W-Ta, Au, and U mineralization. Individual mineral deposits represent the results of the superposition of a series of exogenic and endogenic processes. Exogenic processes controlled (1) the enrichment of the ore elements in sedimentary protoliths via residual enrichment during intense chemical weathering and via climatically or tectonically controlled redox traps, (2) the spatial distribution of fertile protoliths, and, thus, eventually (3) the spatial distribution of mineralization. Endogenic processes resulting in metamorphism and crustal melting controlled the mobilization of Sn-W, Au, and U from these enriched protoliths and, thus, account for the age distribution of Sn-W and Au mineralization and U-fertile granites. It is the sequence of exogenic and endogenic processes that eventually results in the formation of mineralization in particular tectonic zones. Whereas the endogenic processes were controlled by orogenic processes during the assembly of western Pangea itself, the exogenic processes were linked to the formation of suitable source rocks for later mineralization. The contrasting distribution of magmatic and hydrothermal Sn-W-Ta, Au, and U mineralization on the Laurussia and Gondwana sides of the plate boundary zone reflects the contrasting distribution of fertile protoliths and the contrasting tectonic situation on these margins. The Laurussian margin was an active margin during most of the Paleozoic, and the distribution of different mineralization types reflects the distribution of terranes of contrasting provenance. The Gondwanan margin was a passive margin during most of the Paleozoic, and the similar distribution of a wide range of different metals (Sn, W, Ta, Au, and U) reflects the fact that the protoliths for the various metals were diachronously accumulated on the same shelf, before the metals were mobilized during Acadian, Variscan, and Alleghanian orogenic processes.
Paleozoic orogenies and relative plate motions at the sutures of the Iapetus-Rheic Ocean
ABSTRACT Early Ordovician to late Permian orogenies at different plate-boundary zones of western Pangea affected continental crust derived from the plates of North America (Laurentia), Europe (East European Craton including Baltica plus Arctida), and Gondwana. The diachronic orogenic processes comprised stages of intraoceanic subduction, formation and accretion of island arcs, and collision of several continents. Using established plate-tectonic models proposed for different regions and time spans, we provide for the first time a generic model that explains the tectonics of the entire Gondwana-Laurussia plate-boundary zone in a consistent way. We combined the plate kinematic model of the Pannotia-Pangea supercontinent cycle with geologic constraints from the different Paleozoic orogens. In terms of oceanic lithosphere, the Iapetus Ocean is subdivided into an older segment (I) and a younger (II) segment. Early Cambrian subduction of the Iapetus I and the Tornquist oceans at active plate boundaries of the East European Craton triggered the breakup of Pannotia, formation of Iapetus II, and the separation of Gondwana from Laurentia. Prolonged subduction of Iapetus I (ca. 530 –430 Ma) culminated in the Scandian collision of the Greenland-Scandinavian Caledonides of Laurussia. Due to plate-tectonic reorganization at ca. 500 Ma, seafloor spreading of Iapetus II ceased, and the Rheic Ocean opened. This complex opening scenario included the transformation of passive continental margins into active ones and culminated in the Ordovician Taconic and Famatinian accretionary orogenies at the peri-Laurentian margin and at the South American edge of Gondwana, respectively. Rifting along the Avalonian-Cadomian belt of peri-Gondwana resulted in the separation of West Avalonian arc terranes and the East Avalonian continent. The vast African/Arabian shelf was affected by intracontinental extension and remained on the passive peri-Gondwana margin of the Rheic Ocean. The final assembly of western Pangea was characterized by the prolonged and diachronous closure of the Rheic Ocean (ca. 400–270 Ma). Continental collision started within the Variscan-Acadian segment of the Gondwana-Laurussia plate-boundary zone. Subsequent zipper-style suturing affected the Gondwanan Mauritanides and the conjugate Laurentian margin from north to south. In the Appalachians, previously accreted island-arc terranes were affected by Alleghanian thrusting. The fold-and-thrust belts of southern Laurentia, i.e., the Ouachita-Marathon-Sonora orogenic system, evolved from the transformation of a vast continental shelf area into a collision zone. From a geodynamic point of view, an intrinsic feature of the model is that initial breakup of Pannotia, as well as the assembly of western Pangea, was facilitated by subduction and seafloor spreading at the leading and the trailing edges of the North American plate and Gondwana, respectively. Slab pull as the plate-driving force is sufficient to explain the entire Pannotia–western Pangea supercontinent cycle for the proposed scenario.
Abstract Three supercontinents have been suggested to have existed in the last 1 Gyr. The supercontinent status of Pangaea and Rodinia is undisputed. In contrast, there is ongoing controversy on whether Pannotia existed at all. Here, we test the hypothesis of a Pannotian supercontinent. Using first-order tectonic constraints, we reconstruct the Paleozoic kinematics of major continents relative to the East European Craton. Back-rotation from Pangaea results in a supercontinent constellation in the early Paleozoic corroborating the existence of Pannotia. The presented model explains first-order constraints for both the break-up of Pannotia and the subsequent assembly of Pangaea. The break-up of Pannotia comprises (1) the early Paleozoic opening of Iapetus II and in turn the Rheic Ocean, concomitant with the subduction of the Neoproterozoic Iapetus I Ocean and (2) the coeval opening of the Palaeo-Arctic Ocean, which separated Siberia from the North American Craton. The subsequent convergence of the North American Craton, Avalonia, Gondwana and Siberia with the East European Craton resulted in Paleozoic collisional orogenies at different plate boundary zones. The existence of Rodinia, Pannotia and Pangaea as pari passu supercontinents implicates two complete supercontinent cycles from Rodinia to Pannotia and from Pannotia to Pangaea in the Neoproterozoic and the Paleozoic, respectively.
A variety of xenoliths from the lower crust to mantle transition occur in Quaternary mafic intraplate lavas of the Bayuda volcanic field of northern Sudan. The lower-crust xenoliths include plagioclase- and garnet-bearing mafic granulite. Ultra-mafic garnet-bearing pyroxenite, websterite, hornblendite, and distinct peridotite xenoliths are from the upper lithospheric mantle. Sr, Nd, and Pb isotope signatures distinguish between ultramafic and granulite xenoliths. The latter show a strong compositional affinity to juvenile Neoproterozoic crust. The Pb isotope composition of the ultramafic xenoliths resembles the distinct high-μ signature ( 206 Pb/ 204 Pb >19.5) of their host basanite. These xenoliths may represent cumulates of late Mesozoic to Quaternary mafic intraplate magmatism. The felsic upper crust in a schematic lithospheric profile of the Bayuda area includes predominantly granitoids, migmatites, and metasedimentary rocks that represent reworked old cratonic or juvenile Neoproterozoic rocks. The deep lower crust is represented by mafic granulite, likely cumulate rocks from Neoproterozoic juvenile magmatism. The crust-mantle transition is characterized by ultramafic cumulate rocks possibly from the late Mesozoic to Quaternary magmatism. The peridotites of the same xenolith suites represent typical lithospheric mantle with variable degrees of depletion by melt extraction.
Precambrian
Abstract Around 88% of the history of the Earth occurred during the Precambrian period, which can be subdivided into the Archaean and the Proterozoic eons (Figs. 2.1 & 2.2 ). The Archaean eon (Greek archaia — ancient ones; 4.56-2.5 Ga) comprises the Eo-Palaeo-, Meso-and Neoarchaean eras. For the early Archaean the term Hadean is also used (Greek hades — unseen or hell; 4.56-3.8 Ga) (Fig. 2.1). The Proterozoic eon (Greek proteros — first, zoon — creature; 2.5-0.542 Ga) is composed of the Palaeo-, Meso-and Neoproterozoic eras (Fig. 2.2). The latter eras can be subdivided into different periods defined by the International Commission on Stratigraphy on the basis of geochronological data and characteristic features such as particular geotectonic settings and events ( Gradstein et al. 2004 ). Palaeoproterozoic periods include the Siderian (Greek sideros — iron; 2.5-2.3 Ga), the Rhyacian (Greek rhyax — steam of lava; 2.3-2.05 Ga), the Orosirian (Greek orosira — mountain range; 2.05-1.8 Ga) and the Statherian (Greek statheros — stable; 1.8-1.6 Ga). The Calymmian (Greek calymma — cover; 1.6-1.4 Ga), Ectasian (Greek ectasis — extension; 1.4-1.2 Ga), and Stenian (Greek stenos — narrow; 1.2-1.0 Ga) are the Mesoproterozoic periods, while the Neoproterozoic is subdivided into the Tonian (Greek tonas — stretch; 1.0-0.85 Ga), Cryogenian (Greek cryos — ice, genesis — birth; 0.85-0.635 Ga), and finally Ediacaran (0.635-0.542 Ma). This latter is named after the Ediacara Hills (Flinders Ranges, Australia) and characteristically contains the Ediacara biota which represents the dawn of evolved life-forms. The Ediacaran period
Cadomian tectonics
Abstract The Cadomian Orogeny comprises a series of complex sedimentary, magmatic and tectonometamorphic events that spanned the period from the mid-Neoproterozoic ( c . 750 Ma) to the earliest Cambrian ( c . 540-530 Ma) along the periphery of the super-continent Gondwana (peri-Gondwana, Fig. 3.1 ). Modern data demonstrate broad continuity between Cadomian events and the later opening of the Rheic Ocean during Cambrian-Ordovician times ( Linnemann et al. 2007 ). Due to very similar contemporaneous orogenic processes in the Avalonian microcontinent, the collective terms ‘Avalonian-Cadomian’ Orogeny and ‘Avalonian-Cadomian’ Active Margin have often been used in the modern literature (e.g. Nance & Murphy 1994 ; Fig. 3.1 ). Rock units formed during the Cadomian Orogeny are commonly referred to collectively as ‘Cadomian Basement’. Peri-Gondwanan terranes, microcontinents and crustal units in Central, Western, Southern and Eastern Europe, in the Appalachians (eastern USA and Atlantic Canada), and in North Africa were affected by the Cadomian Orogeny. This orogenic event is also apparently present in Baltica because of the 'Cadomian affinity' of late Precambrian orogenic events in the Urals and in the Timanides on the margin of Baltica ( Roberts & Siedlecka 2002 ). The Cadomian Orogeny sensu stricto was first defined in the North Armorican Massif in France on the basis of the unconformity that separates deformed Precambrian rock units from their Early Palaeozoic (Cambro-Ordovician) overstep sequence (see below). This unconformity is commonly referred to as the ‘Cadomian unconformity’ (Fig. 3.2 ). However, it cannot be precluded that the youngest metasedimentary rocks affected by
The Variscan orogeny in the Saxo-Thuringian zone—Heterogenous overprint of Cadomian/Paleozoic Peri-Gondwana crust
The Saxo-Thuringian zone of the European Variscides contains the record of the Cadomian and Variscan orogenies and a Paleozoic marine transition stage. The classical view of a relatively simple, double-vergent folded sedimentary basin at the end of the Early Carboniferous is challenged by the widespread occurrence of Late Devonian to Early Carboniferous high-pressure metamorphic units tectonically juxtaposed with low-grade Paleozoic successions. Here we demonstrate that the subdivision of the Saxo-Thuringian zone in three principal units (autochthonous domain, wrench and thrust zone, and allochthonous domain) and their heterogeneous overprint by two regional deformation events during the Variscan orogeny explain the entire geological record. Late Devonian to Early Carboniferous subduction of continental crust inside the allochthonous domain affected a Cadomian basement and sediments deposited on the same continental shelf as the one preserved in the autochthonous domain. Strain partitioning during this regional D1 process led to the formation and evolution of a wrench and thrust zone surrounding the autochthonous domain. The latter was only affected by regional D2 deformation, which was related to regional dextral transpression, rapid exhumation of the subducted rocks of the allochthonous domain, and final filling and subsequent folding of the Saxo-Thuringian flysch basin that covers the autochthonous domain and the wrench and thrust zone. The Saxo-Thuringian zone is interpreted as a fragment of Peri-Gondwana that never separated from Gondwana to move as an independent terrane and that borders to the Old Red continent, represented by the Rheno-Hercynian zone, along a strike-slip dominated segment of the Rheic suture. The juxtaposition of the Saxo-Thuringian zone with the adjacent areas is discussed as a continuous subduction and/or accretion process representative for the entire Variscan orogen.
Nd-Sr-Pb isotope data are used to characterize the sources of Late Neoproterozoic and Early Paleozoic siliciclastic rocks of the Teplá-Barrandian unit of the Bohemian Massif. Geochemical and isotopic signatures of samples from different stratigraphic levels reflect changing sources and weathering conditions through time and allow a correlation with shifting geotectonic regimes. Late Neoproterozoic rocks were deposited in a magmatic arc–related setting within the Avalonian-Cadomian belt at the periphery of West Gondwana. Fine-grained graywackes yield crustal residence ages (T DM ) of 2.17–1.49 Ga, documenting contributions of old crust. Their ϵNd 570 values, as well as Pb and Sr isotopic compositions, reflect mixing of detritus derived from old crust with a Neoproterozoic magmatic arc component. The change in the geo-tectonic regime to transtension/rifting occurred during the terminal Neoproterozoic and is documented by more radiogenic ϵNd T values (−6.0 to +1.0) and younger T DM (1.65–1.12 Ga) of the Cambrian sediments. Besides the involvement of a post-Neoproterozoic juvenile source, the Lower Cambrian basin was also fed from an old upper crustal domain, as indicated by their high 207 Pb/ 206 Pb values. In contrast, Middle Cambrian siliciclastic rocks are mainly derived from the Cadomian basement. In the Ordovician pelites, ϵNd T values of −9.6 to −8.3 and radiogenic Sr and Pb isotopic compositions reflect an increasing input of material derived from the cratonic hinterland. Their T DM values range from 2.02 to 1.88 Ga. The uniform geochemical and isotopic compositions of the Ordovician samples indicate efficient mixing of the detritus prior to deposition in a mature rift or shelf environment at the Gondwanan margin.
Abstract Drill core samples of garnet-clinopyroxene granulite at Tirschheim and a reference sample at Waldheim (Saxon Granulite Massif, Germany) endured the same P-T conditions, but developed variable mineral assemblages due to differences in bulk chemistry, reaction progress, deformation and retrogression. Titanite formed during peak-metamorphic conditions of 22–24 kbar and 1020–1050 °C. Dating titanite from the various samples should yield the same age for all. The observed age variation, which exceeds the duration of the entire metamorphic cycle, originates from the contrasting preservation of isotopic inheritance during peak metamorphism and from post-peak re-equilibration. (1) Pb inheritance observed in some peak-metamorphic titanite demonstrates that geochronologically relevant elements are redistributed among remaining reactants and reaction products during prograde metamorphism and that the sequence of metamorphic reactions does not result in isotopic homogenization. Instead, metamorphic minerals inherit the radiogenic signatures of the precursor minerals and may in extreme cases approach the age of the precursor mineral. (2) Titanite that formed at peak-metamorphic conditions is characterized by high A1 contents and X F ≈ 0.8−1. Texturally comparable titanite that re-equilibrated during cooling (reduced Al contents and X F ) yields too young U-Pb ages. The age of such re-equilibrated titanite does not correspond to the age of the event indicated by the texture.
Upper-plate deformation during collisional orogeny: a case study from the German Variscides (Saxo-Thuringian Zone)
Abstract A doubly vergent orogenic wedge system within the Central European Variscides developed during Carboniferous collision of two continental fragments, the northwestern edge of the Saxo-Thuringian upper plate and the Rheno-Hercynian passive margin in the lower plate. The resulting thrust system in the upper plate above the SE-dipping subduction zone retains the memory of the mode of deformation partitioning and material flow pattern in its internal architecture, its kinematic, metamorphic and geochronological record, and its reflection seismic image. New data indicate a stepwise SE-ward progradation of the NW Saxo-Thuringian fold belt with two stages of shortening between about 340 and 335 and between 320 and 310 Ma above a NW-dipping basal detachment. The NW Saxo-Thuringian fold belt is reinterpreted as a retro-wedge that was kinematically coupled to the Rheno-Hercynian pro-wedge and subduction system. The two steps in retro-wedge growth are linked to (a) the onset of collision with the Rheno-Hercynian margin causing upper-plate uplift and (b) a widespread late-orogenic stage of wedge thickening. The retro-wedge accumulated mostly diffuse shortening of > 100 km versus the shortening by imbrication of 180–200 km in the Rheno-Hercynian lower plate. Material advection and orogenic architecture were strongly affected by asymmetric erosional removal towards the lower-plate foreland and by transient mechanical properties of the wedge system.